Clique based centrality measure in hypergraphs
Contributions to game theory and management, Tome 17 (2024), pp. 25-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper presents a clique-based centrality measure for hypergraphs, using the Shapley value to evaluate node centrality in multi-way interactions. The proposed method identifies critical intersection nodes and provides insights into the roles of peripheral nodes in different hypergraph structures. Experimental results on various hypergraphs demonstrate the method's applicability and stability under different scaling factors
Keywords: hypergraph, cooperative game, Shapley value, centrality measure, socio-philosophical analysis.
Mots-clés : clique
@article{CGTM_2024_17_a3,
     author = {Ruolin Huang and Anna Tur},
     title = {Clique based centrality measure in hypergraphs},
     journal = {Contributions to game theory and management},
     pages = {25--37},
     year = {2024},
     volume = {17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2024_17_a3/}
}
TY  - JOUR
AU  - Ruolin Huang
AU  - Anna Tur
TI  - Clique based centrality measure in hypergraphs
JO  - Contributions to game theory and management
PY  - 2024
SP  - 25
EP  - 37
VL  - 17
UR  - http://geodesic.mathdoc.fr/item/CGTM_2024_17_a3/
LA  - en
ID  - CGTM_2024_17_a3
ER  - 
%0 Journal Article
%A Ruolin Huang
%A Anna Tur
%T Clique based centrality measure in hypergraphs
%J Contributions to game theory and management
%D 2024
%P 25-37
%V 17
%U http://geodesic.mathdoc.fr/item/CGTM_2024_17_a3/
%G en
%F CGTM_2024_17_a3
Ruolin Huang; Anna Tur. Clique based centrality measure in hypergraphs. Contributions to game theory and management, Tome 17 (2024), pp. 25-37. http://geodesic.mathdoc.fr/item/CGTM_2024_17_a3/

[1] Benson, A. R., “Three Hypergraph Eigenvector Centralities”, SIAM J. Math. Data Sci., 1:2 (2019) | DOI | MR

[2] Bretto, A., Hypergraph Theory - An Introduction, Springer International Publishing, Switzerland, 2013, 119 pp. | MR

[3] Bykova, V., “The Clique Minimal Separator Decomposition of a Hypergraph”, Journal of Siberian Federal University. Mathematics and Physics, 5:1 (2012), 36–45

[4] Li, J., Tur, A., Zavrajnov, M., “Importance of Agents in Networks: Clique Based Game-Theoretic Approach”, Contributions to Game Theory and Management, 15 (2022), 189–199 | DOI | MR

[5] Faghani, M. R., “A Study of XSS Worm Propagation and Detection Mechanismsin Online Social Networks”, IEEE Transactions on Information Forensics and Security, 8:11 (2013), 1815–1826 | DOI

[6] Mazalov, V. V., Avrachenkov, K. E., Trukhina, L. I., Tsynguev, B. T., “Game-Theoretic Centrality Measures for Weighted Graphs”, Fundamenta Informaticae, 145:3 (2016), 341–358 | DOI | MR

[7] Mazalov, V. V., Khitraya, V. A., “A Modified Myerson Value for Determining the Centrality of Graph Vertices”, Automation and Remote Control, 82:1 (2021), 145–159 | DOI | MR

[8] Shapley, L. S., “A value for n-person games”, Contributions to the Theory of Games II, v. 2, eds. Kuhn, H. and Tucker, A., Princeton University Press, Princeton, 1953 | MR

[9] Tantlevskij, I., Kuzyutin, D., Smirnova, N., “A Signed Network Model of the Interaction Between Religious Movements and Authority in Judea”, Modeling and Simulation of Social-Behavioral Phenomena in Creative Societies, Communications in Computer and Information Science, 2211, eds. Agarwal, N., Sakalauskas, L., Tukeyev, U., Springer, Cham, 2024

[10] Tudisco, F., Higham, D. J., “Node and edge nonlinear eigenvector centrality for hypergraphs”, Commun Phys., 4 (2021), 201 | DOI

[11] Tuǧal, İ., Zeydin, P., “Centrality with Entropy in Hypergraphs”, Rahva Tek. Ve Sos. Araşt{\i}rmalar Derg., 1 (2021), 84–91