Epidemic processes in networks: a comprehensive study of SIR model and network topologies
Contributions to game theory and management, Tome 17 (2024), pp. 243-257 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we explore the dynamics of epidemic processes on different types of single-layer network structures, emphasizing the impact of network structure on the spread of disease. We first propose a single-layer SIR (susceptible-infected-recovered) network model and investigate the impact of network structure on virus transmission. Numerical simulation results indicate that in scale-free networks, infections in hub nodes lead to faster and more widespread spread compared to the absence of such a network. In terms of epidemic control, the importance of disconnecting key nodes is emphasized. In random networks, transmission is generally faster and has higher peak infection levels than in scale-free networks. The findings reveal that network topology and initial infection nodes profoundly influence virus spread patterns, offering critical insights for designing targeted epidemic control strategies that minimize transmission by breaking key network links.
Keywords: SIR network model, epidemic processes, random network.
@article{CGTM_2024_17_a19,
     author = {Li Yike and Elena Gubar},
     title = {Epidemic processes in networks: a comprehensive study of {SIR} model and network topologies},
     journal = {Contributions to game theory and management},
     pages = {243--257},
     year = {2024},
     volume = {17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2024_17_a19/}
}
TY  - JOUR
AU  - Li Yike
AU  - Elena Gubar
TI  - Epidemic processes in networks: a comprehensive study of SIR model and network topologies
JO  - Contributions to game theory and management
PY  - 2024
SP  - 243
EP  - 257
VL  - 17
UR  - http://geodesic.mathdoc.fr/item/CGTM_2024_17_a19/
LA  - en
ID  - CGTM_2024_17_a19
ER  - 
%0 Journal Article
%A Li Yike
%A Elena Gubar
%T Epidemic processes in networks: a comprehensive study of SIR model and network topologies
%J Contributions to game theory and management
%D 2024
%P 243-257
%V 17
%U http://geodesic.mathdoc.fr/item/CGTM_2024_17_a19/
%G en
%F CGTM_2024_17_a19
Li Yike; Elena Gubar. Epidemic processes in networks: a comprehensive study of SIR model and network topologies. Contributions to game theory and management, Tome 17 (2024), pp. 243-257. http://geodesic.mathdoc.fr/item/CGTM_2024_17_a19/

[1] Barabási, A. L., Albert, R., “Emergence of scaling in random networks”, Science, 286:5439 (1999), 509–512 | DOI | MR

[2] Bloom, D. E., Cadarette, D., “Infectious disease threats in the twenty-first century: strengthening the global response”, Frontiers in Immunology, 10 (2019), 549 | DOI

[3] Brauer, F., “Compartmental models in epidemiology”, Mathematical Epidemiology, 2008, 19–79 | DOI | MR

[4] Broido, A. D., Clauset, A., “Scale-free networks are rare”, Nature Communications, 10:1 (2019), 1017 | DOI

[5] Buldyrev, S. V., Parshani, R., Paul, G., Stanley, H. E., and Havlin, S., “Catastrophic cascade of failures in interdependent networks”, Nature, 464:7291 (2010), 1025–1028 | DOI

[6] Darabi Sahneh, F., Scoglio, C., Van Mieghem, P., “Generalized epidemic mean-field model for spreading processes over multilayer complex networks”, IEEE/ACM Transactions on Networking, 21:5 (2013), 1609–1620 | DOI

[7] Fu, X., Small, M., Walker, D. M., Zhang, H., “Epidemic dynamics on scale-free networks with piecewise linear infectivity and immunization”, Physical Review E, 77:3 (2008), 036113 | DOI | MR

[8] Gubar, E., Kumacheva, S., Zhitkova, E., Porokhnyavaya, O., “Propagation of information over the network of taxpayers in the model of tax auditing”, 2015 International Conference 'Stability and Control Processes' in Memory of V.I. Zubov (SCP), IEEE, St. Petersburg, 2015, 244–247 | DOI

[9] Gubar, E., Zhu, Q., Taynitskiy, V., “Optimal control of multi-strain epidemic processes in complex networks”, Game Theory for Networks, eds. L. Duan, A. Sanjab, H. Li, X. Chen, D. Materassi, and R. Elazouzi, Springer International Publishing, Cham, 2017, 108–117

[10] Kermack, W. O., McKendrick, A. G., “A contribution to the mathematical theory of epidemics”, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 115:772 (1927), 700–721

[11] Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A., “Epidemic processes in complex networks”, Reviews of Modern Physics, 87:3 (2015), 925–979 | DOI | MR

[12] Pastor-Satorras, R., Vespignani, A., “Epidemic spreading in scale-free networks”, Physical Review Letters, 86:14 (2001), 3200–3203 | DOI | MR

[13] Pastor-Satorras, R., Vespignani, A., “Epidemic dynamics and endemic states in complex networks”, Physical Review E, 63:6 (2001), 066117 | DOI

[14] Payne, J. F., “History of epidemiology in England”, Lancet, 2 (1893), 1293

[15] Saumell-Mendiola, A., Serrano, M. Á., and Boguná, M., “Epidemic spreading on interconnected networks”, Physical Review E-Statistical, Nonlinear, and Soft Matter Physics, 86:2 (2012), 026106 | DOI

[16] Tamerius, J., Nelson, M. I., Zhou, S. Z., Viboud, C., Miller, M. A., Alonso, W. J., “Global influenza seasonality: reconciling patterns across temperate and tropical regions”, Environmental Health Perspectives, 119:4 (2011), 439–445 | DOI

[17] Taynitskiy, V., Gubar, E., Fedyanin, D., Petrov, I., Zhu, Q., Optimal control of joint multi-virus infection and information spreading, Jul. 19 2020, arXiv: (Accessed: May 31, 2024) 2007.09745

[18] Youssef, M., Scoglio, C., “An individual-based approach to SIR epidemics in contact networks”, Journal of Theoretical Biology, 283:1 (2011), 136–144 | DOI | MR

[19] Zhan, X., Chuang, L., Ge, Z., Zi-Ke, Z., Gui-Quan, S., Jonathan, J. H., Zhu, Zhen J., “Coupling dynamics of epidemic spreading and information diffusion on complex networks”, Applied Mathematics and Computation, 332 (2018), 437–448 | DOI | MR