Mots-clés : Schopenhauer, Bugaev, ABC conjecture.
@article{CGTM_2024_17_a14,
author = {Michael A. Popov},
title = {E-games: a very short introduction},
journal = {Contributions to game theory and management},
pages = {164--172},
year = {2024},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CGTM_2024_17_a14/}
}
Michael A. Popov. E-games: a very short introduction. Contributions to game theory and management, Tome 17 (2024), pp. 164-172. http://geodesic.mathdoc.fr/item/CGTM_2024_17_a14/
[1] Bugaev, N. V., “Numerical equalities associated with a symbol E characteristics”, Mathematical Sbornik, 1:1 (1866), 1–162 (In Russian)
[2] Bugaev, N. V., “Solution of a particular question of chess game using numerical function”, Mathematical Sbornik, 9:3 (1879), 355–360 (In Russian)
[3] Bugaev, N. V., “Discontinuous Geometry”, Mathematical Sbornik, 5:3 (1891), 600–607 (In Russian)
[4] Bugaev, N. V., “Introduction in Number Theory”, Mathematical Sbornik, 25:2 (1905), 334–348 (In Russian) | MR
[5] Bugaev, N. V., “Mathematics and scientific-philosophical perception of the World”, Mathematical Sbornik, 25:2 (1905), 349–369 (In Russian)
[6] Dey, I et al., Quantum game theory meets Quantum networks, 15 June 2023, arXiv: 2306.08928v1 [cs:NI]
[7] Dilmegani, C., In Depth Guide to Quantum AI, AI Multiple Research, Dec 22 2022
[8] Cho, I-K., Kreps, D. M., “Signaling games and Stable Equilibria”, The Quarterly Journal of Econ., 102:2 (1987), 179–221 | DOI | MR
[9] Crawford, V. P., Sobel, J., “Strategic Information Transmission”, Econometrica, 50:6 (1982), 1431–1451 | DOI | MR
[10] Crossman, S. J., Perry, M., “Perfect sequential equilibrium”, Journal of Economic Theory, 39:1 (1986), 97–119 | DOI | MR
[11] Frackiewich, P., Szopa, M., “Permissible extensions of classical quantum games combining three strategies”, Quantum Information Processing, 23 (2024), 75 | DOI | MR
[12] Khan, F. S. et al., “Quantum Games: a review of the history,current state and interpretation”, Quantum Information Processing, 17 (2018), 309 | DOI | MR
[13] Kostler, A., The roots of coincidence, The Chaucer Press, Bungay, Suffolk, 1974
[14] Kohlberg, E., Mertens, J - F., “On strategic Stability of Equilibria”, Econometrica, 54 (1986), 1003–1037 | DOI | MR
[15] Leung, M. C., Classical vs Quantum Games: Continuous-Time evolutionary strategy dynamics, 20 Apr 2011, arXiv: 1104.3953 [quant-ph]
[16] Meyer, D. A., “Quantum Strategies”, Phys. Rev.Lett., 82:5 (1999), 1052–1055 | DOI | MR
[17] Nekrasov, P. A., “Philosophy and logical science on mass expressions of human activity”, Mathematical Sbornik, XXIII (1902) (In Russian)
[18] Nekrasov, P. A., “Moscow's Philosophico-Mathematical School and its founders”, Mathematical Sbornik, 1 (1904), 3–249 (In Russian)
[19] Nekrasov, P. A., “Functional equation studies of chess and nard competitions”, Mathematical Sbornik, 30:2 (1916), 344–384 (In Russian)
[20] Mochizuki, S., On the essential logical structure of the Inter-Universal Teichmuller theory in terms of logical relations, 2024 https://www.kurims.kyoto-u.ac.jp/m̃otizuki/papers-japanese.html
[21] Molina-Terriza, G., Zeilinger, A. et al., Experimental Quantum Coin Tossing, 2004, arXiv: 0404.027v1 [quant-ph]
[22] Popov, M. A., P vs NP Problem in the field anthropology, 2009, arXiv: 0904.3074 [computersciences]
[23] Reny, Ph., “Natural Language Equilibrium: signaling games”, Nuffield Economic Theory Seminar University of Oxford (Michaelmas Term, 1 week, 18 October), 2024