Mots-clés : malaria, host population
@article{CGTM_2024_17_a11,
author = {Serigne M. Ndiaye and Elena M. Parilina},
title = {Vector-borne malaria epidemic model with vaccination},
journal = {Contributions to game theory and management},
pages = {125--146},
year = {2024},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CGTM_2024_17_a11/}
}
Serigne M. Ndiaye; Elena M. Parilina. Vector-borne malaria epidemic model with vaccination. Contributions to game theory and management, Tome 17 (2024), pp. 125-146. http://geodesic.mathdoc.fr/item/CGTM_2024_17_a11/
[1] Aldila, D., Seno, H. A., “Population dynamics model of mosquito-borne disease transmission, focusing on mosquitoes-biased distribution and mosquito repellent use”, Bull. Math. Biol., 81 (2019), 4977–5008 | DOI | MR
[2] Atcheson, E., Bauza, K., Reyes-Sandoval, A., “A probabilistic model of pre-erythrocytic malaria vaccine combination in mice”, PLoS ONE, 14:1 (2019), e0209028 | DOI
[3] Bernoulli, D., “Essai d‚'une nouvelle analyse de la mortalité causée par la petite vérole et des avantages de l‚'inoculation pour la prévenir”, Hist. Acad. R. Sci. Paris (Paris), 1760/1766, 1–45
[4] Britton, T., “Stochastic epidemic models: A survey”, Mathematical Biosciences, 225:1 (2010), 24–35 | DOI | MR
[5] Calistus, N. Ng., “The impact of temperature and decay in insecticide-treated net efficacy on malaria prevalence and control”, Mathematical Biosciences, 355 (2022) | DOI
[6] Challenger, J. D., Olivera Mesa, D., Da, D. F., Yerbanga, R. S., Lefévre, T., Cohuet, A., Churcher, T. S., “Predicting the public health impact of a malaria transmission-blocking vaccine”, Nature Communication, 12:1494 (2021), 1–12
[7] Chander, P., Tulkens, H., “The core of an economy with multilateral environmental externalities”, International Journal of Game Theory, 26 (1997), 379–401 | DOI | MR
[8] Chang, S. L., Piraveenan, M., Pattison, P., Prokopenko, M., “Game theoretic modelling of infectious disease dynamics and intervention methods”, Journal of Biological Dynamic, 14:1 (2020), 57–89 | DOI | MR
[9] Cooper, I., Mondal, A., Antonopoulos, C. G., “A SIR model assumption for the spread of COVID-19 in different communities”, Chaos Solitons Fractals, 139 (2020), 110057 | DOI | MR
[10] Diekmann, O., Heesterbeek, A. P., Roberts, M. G., “The construction of next-generation matrices for compartmental epidemic models”, J. R. Soc. Interface, 7 (2010), 873–885 | DOI
[11] Dietz, K., Heesterbeek, J. A. P., “Daniel bernoulli s epidemiological model revisited”, Mathematical Biosciences, 2002, 1–21 | DOI | MR
[12] Forouzannia, F., Gumel, A. B., “Mathematical analysis of an agestructured model for malaria transmission dynamics”, Mathematical Biosciences, 247 (2014), 80–94 | DOI | MR
[13] Forouzannia, F., Gumel, A. B., “Dynamics of an age-structured two-strain model for malaria transmission”, Applied Mathematics and Computation, 250 (2015), 860–886 | DOI | MR
[14] Galactionova, K., Smith, T. A., Penny, M. A., “Insights from modelling malaria vaccines for policy decisions: the focus on RTS,S”, Malaria Journal, 20:1 (2021), 1–8 | DOI
[15] Herdicho, F. F., Chukwu Williams, Tasman, H., “An optimal control of malaria transmission model with mosquito seasonal factor”, Results in Physics, 25 (2021), 104238 | DOI
[16] Jia Li., “Simple discrete-time malarial models”, Journal of Difference Equations and Applications, 19:4 (2013), 649–666 | DOI | MR
[17] Jones, J. H., Notes on R0, 323, Department of Anthropological Sciences, Stanford, CA, USA, 2007, 19 pp.
[18] Kermack, W. O., McKendrick, A. G., “A contribution to the mathematical theory of epidemics”, Proceedings of the Royal Society of London. Series A, 115:772 (1927), 700–721
[19] Koella, J. C., “On the use of mathematical models of malaria transmission”, Acta Tropica, 49:1 (1991), 1–25 | DOI
[20] Labadin, J., Kong, C. M. L., Juang, S. F. S., “Deterministic Malaria Transmission Model with Acquired Immunity”, Proceedings of the World Congress on Engeneering and Computer Science, WCECS 2009 (October 20–22, San Francisco, USA), v. II, 2009
[21] Lipsitch, M., Cohen, T., Cooper, B., Robins, J. M., Ma, S., James, L., Gopalakrishna, G., Chew, S. K., Tan, C. C., Samore, M. H., Fisman, D., Murray, M., “Transmission dynamics and control of severe acute respiratory syndrome”, Science, 300 (2003), 1966–1970 | DOI
[22] Nakul, C., Cushing, J. M., Hyman, J. M., “Bifurcation analysis of a mathematical model for malaria transmission”, SIAM Journal on Applied Mathematics, 67:1 (2006), 24–25 | DOI | MR
[23] Ndiaye, S. M., “Vector epidemic model of malaria with non constant-size population”, Contributions to Game Theory and Management, 15 (2022), 200–217 | DOI | MR
[24] Ndiaye, S. M. and Parilina, E. M., “An epidemic model of malaria without and with vaccination. Pt 1. A model of malaria without vaccination”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 18:2 (2022), 263–277 (in Russian) | DOI | MR
[25] Niare, S., Berenger, J. M., Dieme, C., Doumbo, O., Raoult, D., Parola, P., Almeras, L., “Identification of blood meal sources in the main african malaria mosquito vector by maldi-tof ms”, Malaria journal, 15:87 (2016), 15, 15 pp.
[26] Smith, D. L., Battle, K. E., Hay, S. I., Barker, C. M., Scott, T. W., “Ross, Macdonald, and a Theory for the Dynamics and Control of Mosquito-Transmitted Pathogens”, PLoS Pathog., 8:4 (2021), e1002588 | DOI
[27] Smith, T., Killeen, G. F., Maire, N., Ross, A., Molineaux, L., Tediosi, F., Hutton, G., Utzinger, J., Dietz, K., Tanner, M., “Mathematical modeling of the impact of malaria vaccines on the clinical epidemiology and natural history of plasmodium falciparum malaria: Overview”, The American Journal of Tropical Medicine and Hygiene, 75:2, suppl. (2006), 1–10 | DOI
[28] Takashima, E., Tachibana, M., Morita, M., Nagaoka, H., Kanoi, B. N., Tsuboi, T., “Identification of novel malaria transmissionblocking vaccine candidates”, Front Cell Infect Microbiol., 2:1224 (2021)
[29] Teboh-Ewungkem, M. I., Podder, C. N., Gumel, A. B., “Mathematical study of the role of gametocytes and an imperfect vaccine on malaria transmission dynamics”, Bulletin of Mathematical Biology, 72:1 (2010), 63–93 | DOI | MR
[30] Van den Driessche P., “Reproduction numbers of infectious disease models”, Infect. Dis. Model, 2 (2017), 288–303
[31] WHO, World Malaria Report, 2021 https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021
[32] WHO, Roll Back Malaria, 2024 www.rollbackmalaria.org