Generalized integral equations for timing games
Contributions to game theory and management, Tome 16 (2023), pp. 182-191.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider timing games, the payoff functions of which have additional break lines outside the unit square diagonal. A special case of such games are games with piecewise constant payoff functions. Solving these games is reduced to solving a pair of integral equations for the distribution functions of equalizing strategies. The proposed solution methods can be used in the study of random walks on a segment in a variable environment.
Keywords: timing game, game on the unit square, random walks.
@article{CGTM_2023_16_a11,
     author = {Mikhail M. Lutsenko},
     title = {Generalized integral equations for timing games},
     journal = {Contributions to game theory and management},
     pages = {182--191},
     publisher = {mathdoc},
     volume = {16},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2023_16_a11/}
}
TY  - JOUR
AU  - Mikhail M. Lutsenko
TI  - Generalized integral equations for timing games
JO  - Contributions to game theory and management
PY  - 2023
SP  - 182
EP  - 191
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CGTM_2023_16_a11/
LA  - en
ID  - CGTM_2023_16_a11
ER  - 
%0 Journal Article
%A Mikhail M. Lutsenko
%T Generalized integral equations for timing games
%J Contributions to game theory and management
%D 2023
%P 182-191
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CGTM_2023_16_a11/
%G en
%F CGTM_2023_16_a11
Mikhail M. Lutsenko. Generalized integral equations for timing games. Contributions to game theory and management, Tome 16 (2023), pp. 182-191. http://geodesic.mathdoc.fr/item/CGTM_2023_16_a11/

[1] Blackwell, D., Girshick, M. A., Theory of Games and Statistical Decisions, Wiley, New York, 1954, 374 pp. | MR | Zbl

[2] Dreser, M., Games of Strategy. Theory and Applications, Prentice-Hall Applied Mathematics Series, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1961, 352 pp. | MR

[3] Feller, W., An Introduction to Probability Theory and its Applications, v. II, Second edition, John Wiley Sons, Inc., New York–London–Sydney–Toronto, 1971, 738 pp. | MR | Zbl

[4] Garnaev, A., Search Games and Other Aplications of Game theory, Lecture Notes in Economics and Mathematical Systems, 485, Springer, 2000, 145 pp. | DOI | MR

[5] Gliksberg, I. L., Minimax Theorem for upper and lower semi-continuous payoffs, RM-478-PR, The Rand Corporation, 1950

[6] Gross, O., “A rational game on the square”, Contributions to the theory of game, 3, Princeton, 1957, 307–311 | MR

[7] Heuer, G. A., Leopold-Wildburger, U., Silverman's game, Lecture Notes in Economics and Mathematical Systems, 424, Springer, 1995, 283 pp. | DOI | MR

[8] Karlin, S., Mathematical methods and theory in games, programming and economics, Pergamon press, London–Paris, 1959 | MR

[9] Lutsenko, M. M., “A game of a prori estimating with an exponential payoff function”, Mathematical methods in social sciences, Institute of Economics of the Academy of Sciences of the Lithuanian SSR, Vilnius, 1986, 42–47 | MR

[10] Lutsenko, M. M., “On one approach to solving games on the unit square with payoff function $ k(x-y)$, part 1”, Mathematische Operationsforschung und Statistik. Series Optimization, 21:1 (1990), 71–86 (in Russian) | MR | Zbl

[11] Lutsenko, M. M., “On one approach to solving games on the unit square with payoff function $ k(x-y)$, part 2”, Mathematische Operationsforschung und Statistik. Series Optimization, 21:3 (1990), 453–467 (in Russian) | MR | Zbl

[12] Lutsenko, M. M., “Generation of optimal signal carrier frequencies against a background of active interference”, Journal of Computer and Systems Sciences International, 31:2 (1993), 57–62 | MR

[13] Lutsenko, M. M., “Games of timing with additional discontinuity lines”, International conference “Logic, Game Theory and Social Choice” (St. Petersburg, 2001), 158–163

[14] Lutsenko, M. M., “Games of Timing and Random‚ Walks on Interval”, Frontiers of Dynamic Games. Game Theory and Management (St. Petersburg, 2022), Birkhauser, Cham (to appear)

[15] Sion, M., Wolf, Ph., “On a game without a value”, Contribution to the theory of games, v. III, Ann. Math. Study, 39, eds. M. Dresher, A.W. Tacker, R.d. Luce, Princeton University Press, N.Y., 1957, 299–306 | MR

[16] Ville, J., “Sur la théorie générarale des jeux ou intervient l'habilité des joueurs”, Traité du calcul des probabilités et de ses applcation, Applications des jeux de hasard, E. Borel et collab., fasc. 2, v. IV, Gauthier-Villars, Paris, 1938, 105–113

[17] Vorob'ev, N. N., Foundation of game theory of non-cooperative games, Nauka, M., 1984, 496 pp. | MR

[18] Zacks, S., The theory of statistical inference, John Wiley Sons, Inc., New York–London–Sydney–Toronto, 1971 | MR