Multi-objective optimization approach to Malfatti's problem
Contributions to game theory and management, Tome 14 (2021), pp. 82-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, we consider the multi-objective optimization problem based on the circle packing problem, particularly, extended Malfatti's problem (Enkhbat, 2020) with $k$ disks. Malfatti's problem was examined for the first time from a view point of global optimization theory and algorithm in (Enkhbat, 2016). Also, a game theory approach has been applied to Malfatti's problem in (Enkhbat and Battur, 2021). In this paper, we apply the the multi-objective optimization approach to the problem. Using the weighted sum method, we reduce this problem to optimization problem with nonconvex constraints. For solving numerically the weighted sum optimization problem, we apply KKT conditions and find Pareto stationary points. Also, we estimate upper bounds of the global value of the objective function by Lagrange duality. Numerical results are provided.
Keywords: circle packing problem, triangle set, $k$ disks, multi-objective optimization problem, upper bound.
@article{CGTM_2021_14_a7,
     author = {Rentsen Enkhbat and Gompil Battur},
     title = {Multi-objective optimization approach to {Malfatti's} problem},
     journal = {Contributions to game theory and management},
     pages = {82--90},
     publisher = {mathdoc},
     volume = {14},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2021_14_a7/}
}
TY  - JOUR
AU  - Rentsen Enkhbat
AU  - Gompil Battur
TI  - Multi-objective optimization approach to Malfatti's problem
JO  - Contributions to game theory and management
PY  - 2021
SP  - 82
EP  - 90
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CGTM_2021_14_a7/
LA  - en
ID  - CGTM_2021_14_a7
ER  - 
%0 Journal Article
%A Rentsen Enkhbat
%A Gompil Battur
%T Multi-objective optimization approach to Malfatti's problem
%J Contributions to game theory and management
%D 2021
%P 82-90
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CGTM_2021_14_a7/
%G en
%F CGTM_2021_14_a7
Rentsen Enkhbat; Gompil Battur. Multi-objective optimization approach to Malfatti's problem. Contributions to game theory and management, Tome 14 (2021), pp. 82-90. http://geodesic.mathdoc.fr/item/CGTM_2021_14_a7/

[1] Nguyen V. H., J. J. Strodiot, “Computing a Global Optimal Solution to a Design Centering Problem”, Mathematical Programming, 53 (1992), 111–123 | MR | Zbl

[2] Vidigal L. M., S. W. Director, “A Design Centering Algorithm for Nonconvex Regions of Acceptability”, IEEE Transactions on Computer-Aided-Design of Integrated Circuits and Systems, CAD-1, 1982, 13–24

[3] Fraser H. J., J. A. George, “Integrated container loading software for pulp and paper industry”, European Journal of Operational Research, 77 (1994), 466–474 | Zbl

[4] Dowsland K. A., “Optimising the palletisation of cylinders in cases”, OR Spectrum, 13 (1991), 204–212 | Zbl

[5] Enkhbat R., “An algorithm for maximizing a convey function over a simple set”, Journal of Global Optimization, 8 (1996), 379–391 | MR | Zbl

[6] Enkhbat R., “Global optimization approach to Malfatti's problem”, Journal of Global Optimization, 65 (2016), 33–39 | MR | Zbl

[7] Enkhbat R., M. Barkova, “Global search method for solving Malfatti's four-circle problem”, The Bulletin of Irkutsk State University. Series Mathematics, 15 (2019), 38–49

[8] Enkhbat R., “Convex Maximization Formulation of General Sphere Packing Problem”, The Bulletin of Irkutsk State University. Series Mathematics, 31 (2020), 142–149 | MR | Zbl

[9] Enkhbat R., Battur G., “Generalized Nash equilibrium problem based on Malfatti's problem”, Numerical Algebra, Control and Optimization, 11:2 (2021), 209–220 | MR | Zbl

[10] Andreatta M., Bezdek A., Boronski J. P., “The Problem of Malfatti: Two Centuries of Debate”, The Mathematical Intelligencer, 33:1 (2011), 72–76 | MR | Zbl

[11] Nefedov V. N., “Finding the Global Maximum of a Function of Several Variables on a Set Given by Inequality Constraints”, Journal of Numerical Mathematics and Mathematical Physics, 27:1 (1987), 35–51 | MR | Zbl

[12] Strekalovsky A. S., “On the global extrema problem”, Soviet Math. Doklad, 292:5 (1987), 1062–1066 | MR | Zbl

[13] Zalgaller V. A., “An inequality for acute triangles”, Ukr. Geom. Sb., 34 (1991), 10–25

[14] Zalgaller V. A., G. A. Los, “The solution of Malfatti's problem”, Journal of Mathematical Sciences, 72:4 (1994), 3163–3177 | MR

[15] Los G. A., Malfatti's Optimization Problem, Dep. Ukr. NIINTI July 5, 1988, 1988 (in Russian)

[16] Saaty T., Integer Optimization Methods and Related Extremal Problems, Russian translation, M., 1973 | MR

[17] Gabai H., E. Liban, “On Goldberg's inequality associated with the Malfatti problem”, Math. Mag., 41:5 (1967), 251–252 | MR

[18] Goldberg M., “On the original Malfatti problem”, Math. Mag., 40:5 (1967), 241–247 | MR | Zbl

[19] Lob H., H. W. Richmond, “On the solutions of the Malfatti problem for a triangle”, Proc. London Math. Soc., 2:30 (1930), 287–301 | MR

[20] Malfatti C., “Memoria sopra una problema stereotomico”, Memoria di Matematica e di Fisica della Societa ttaliana della Scienze, 10:1 (1803), 235–244

[21] Boyd S., L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004 | MR | Zbl

[22] Bertsekas D. P., Nonlinear programming, 2016 | MR

[23] Ehrgott M., Multicriteria Optimization, Springer, Berlin-Heidelberg, 2005 | MR | Zbl