Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CGTM_2021_14_a10, author = {Anastasiya V. Gavrilova and Yaroslavna B. Pankratova}, title = {About construction of realizability arias of salesman strategies in dynamic salesmen problem}, journal = {Contributions to game theory and management}, pages = {113--121}, publisher = {mathdoc}, volume = {14}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CGTM_2021_14_a10/} }
TY - JOUR AU - Anastasiya V. Gavrilova AU - Yaroslavna B. Pankratova TI - About construction of realizability arias of salesman strategies in dynamic salesmen problem JO - Contributions to game theory and management PY - 2021 SP - 113 EP - 121 VL - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CGTM_2021_14_a10/ LA - en ID - CGTM_2021_14_a10 ER -
%0 Journal Article %A Anastasiya V. Gavrilova %A Yaroslavna B. Pankratova %T About construction of realizability arias of salesman strategies in dynamic salesmen problem %J Contributions to game theory and management %D 2021 %P 113-121 %V 14 %I mathdoc %U http://geodesic.mathdoc.fr/item/CGTM_2021_14_a10/ %G en %F CGTM_2021_14_a10
Anastasiya V. Gavrilova; Yaroslavna B. Pankratova. About construction of realizability arias of salesman strategies in dynamic salesmen problem. Contributions to game theory and management, Tome 14 (2021), pp. 113-121. http://geodesic.mathdoc.fr/item/CGTM_2021_14_a10/
[1] Gavrilova A. A., Pankratova Ya. B., “Realizability Areas of Strategies in the Dynamic Traveling Salesman Problem”, Control Processes and Sustainability, 7:1 (2020), 367–371
[2] de Freitas J. C., Penna P. H. V., “A variable neighborhood search for flying sidekick traveling salesman problem”, International Transactions in Operational Research, 27:1, 267–290 | MR
[3] Kleimenov A. F., Non zero-sum differential games, Nauka, Ekaterinburg, 1993 | MR
[4] Lawler E. L., Lenstra J. K., Rinnooy Kan A. H. G., Shmoys D. B., The Traveling Salesman, John Wiley and Sons, 1986 | MR
[5] Michalewicz Z., Genetic Algorithms + Data Structures = Evolution Programs, 2nd edition, Springer-Verlag, 1994 | MR
[6] Pankratova Y., “Some cases of cooperation in differential pursuit games”, Contributions to Game Theory and Management, eds. L.A. Petrosjan, N. A. Zenkevich, Graduated School of Management, SPbGU, St. Petersburg, 2007, 361–380 | MR
[7] Pankratova Ya. B., “A Solution of a cooperative differential group pursuit game”, Diskretnyi Analiz i Issledovanie Operatsii, 17:2 (2010), 57–78 (in Russian) | MR | Zbl
[8] Pankratova Ya., Tarashnina S., “How many people can be controlled in a group pursuit game”, Theory and Decision, 56, Kluwer Academic Publishers, 2004, 165–181 | MR
[9] Pankratova Y., Tarashnina S., Kuzyutin D., “Nash Equilibria in a Group Pursuit Game”, Applied Mathematical Sciences, 10:17 (2016), 809–821
[10] Petrosjan L. A., ““Life-line” Pursuit Games with Several Players”, Izv. Akad. Nauk Armjan. SSR Ser. Mat., 1:5 (1965), 331–340 | MR
[11] Petrosjan L. A., Shirjaev V. D., “Simultaneous Pursuit of Several Evaders by one Pursuer”, Vestnik Leningrad Univ. Math., 13 (1981) | MR | Zbl
[12] Petrosjan L., Tomskii G., Geometry of Simple Pursuit, Nauka, Novosibirsk, 1983 (in Russian) | MR | Zbl
[13] Reinelt G., The Traveling Salesman: Computational Solutions for TSP Applications, Springer-Verlag, 1994 | MR
[14] Tarashnina S., “Nash equilibria in a differential pursuit game with one pursuer and $m$ evaders”, Game Theory and Applications, v. III, Nova Science Publ., N.Y., 1998, 115–123 | MR
[15] Tarashnina S., “Time-consistent solution of a cooperative group pursuit game”, International Game Theory Review, 4 (2002), 301–317 | MR | Zbl
[16] Tarashnina S., Pankratova Y., Purtyan A., “On a dynamic traveling salesman problem”, Contributions to Game Theory and Management, 10 (2017), 326–338 | MR
[17] Autom. Remote Control, 69:1 (2008), 42–51 | MR | MR | Zbl