Mechanism for shifting Nash equilibrium trajectories to cooperative Pareto solutions in dynamic bimatrix games
Contributions to game theory and management, Tome 13 (2020), pp. 218-243.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, constructions of the generalized method of characteristics are applied for calculating the generalized minimax (viscosity) solutions of Hamilton-Jacobi equations in dynamic bimatrix games. The structure of the game presumes interactions of two players in the framework of the evolutionary game model. Stochastic contacts between players occur according to the dynamic process, which can be interpreted as a system of Kolmogorov's differential equations with controls instead of probability parameters. It is assumed that control parameters are not fixed and can be constructed by the feedback principle. Two types of payoff functions are considered: short-term payoffs are determined in the current moments of time, and long-term payoffs are determined as limit functionals on the infinite time horizon. The notion of dynamic Nash equilibrium in the class of controlled feedbacks is considered for the long-term payoffs. In the framework of constructions of dynamic equilibrium, the solutions are designed on the basis of maximization of guaranteed payoffs. Such guaranteeing strategies are built in the framework of the theory of minimax (viscosity) solutions of Hamilton-Jacobi equations. The analytical formulas are obtained for the value functions in the cases of different orientations for the “zigzags” (broken lines) of acceptable situations in the static game. The equilibrium trajectories generated by the minimax solutions shift the system in the direction of cooperative Pareto points. The proposed approach provides new qualitative properties of the equilibrium trajectories in the dynamic bimatrix games which guarantee better results of payoffs for both players than static Nash equilibria. As an example, interactions of two firms on the market of innovative electronic devices are examined within the proposed approach for treating dynamic bimatrix games.
Keywords: optimal control, dynamic bimatrix games, value functions, minimax solutions of Hamilton-Jacobi equations, dynamic Nash equilibrium trajectories, shift to Pareto maximum.
@article{CGTM_2020_13_a11,
     author = {Nikolay A. Krasovskii and Alexander M. Tarasyev},
     title = {Mechanism for shifting {Nash} equilibrium trajectories to cooperative {Pareto} solutions in dynamic bimatrix games},
     journal = {Contributions to game theory and management},
     pages = {218--243},
     publisher = {mathdoc},
     volume = {13},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2020_13_a11/}
}
TY  - JOUR
AU  - Nikolay A. Krasovskii
AU  - Alexander M. Tarasyev
TI  - Mechanism for shifting Nash equilibrium trajectories to cooperative Pareto solutions in dynamic bimatrix games
JO  - Contributions to game theory and management
PY  - 2020
SP  - 218
EP  - 243
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CGTM_2020_13_a11/
LA  - en
ID  - CGTM_2020_13_a11
ER  - 
%0 Journal Article
%A Nikolay A. Krasovskii
%A Alexander M. Tarasyev
%T Mechanism for shifting Nash equilibrium trajectories to cooperative Pareto solutions in dynamic bimatrix games
%J Contributions to game theory and management
%D 2020
%P 218-243
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CGTM_2020_13_a11/
%G en
%F CGTM_2020_13_a11
Nikolay A. Krasovskii; Alexander M. Tarasyev. Mechanism for shifting Nash equilibrium trajectories to cooperative Pareto solutions in dynamic bimatrix games. Contributions to game theory and management, Tome 13 (2020), pp. 218-243. http://geodesic.mathdoc.fr/item/CGTM_2020_13_a11/

[1] Aubin J. P., “A survey of viability theory”, SIAM J. Control Optim., 28:4 (1990), 749–788 | DOI | MR | Zbl

[2] Basar T., Olsder G. J., Dynamic Noncooperative Game Theory, Academic, London, 1982 | MR | Zbl

[3] Crandall M. G., Lions P. L., “Viscosity solutions of Hamilton-Jacobi equations”, Trans. Amer. Math. Soc., 277:4 (1983), 1–42 | DOI | MR | Zbl

[4] Friedman D., “Evolutionary games in economics”, Econometrica, 59:3 (1991), 637–666 | DOI | MR | Zbl

[5] Hofbauer J., Sigmund K., The Theory of Evolution and Dynamic Systems, Cambridge Univ. Press, Cambridge, 1988 | MR

[6] Intriligator M., Mathematical Optimization and Economic Theory, Prentice-Hall, New York, 1971 | MR

[7] Klaassen G., Kryazhimskii A. V., Tarasyev A. M., “Multiequilibrium game of timing and competition of gas pipeline projects”, Journal of Optimization Theory and Applications, 120:1 (2004), 147–179 | DOI | MR | Zbl

[8] Kleimenov A. F., Nonantagonistic Positional Differential Games, Nauka, Yekaterinburg, 1993 | MR

[9] Krasovskii A. A., Tarasyev A. M., “Conjugation of Hamiltonian systems in optimal control problems”, IFAC Proceedings Volumes, 41:2 (2008), 7784–7789 | DOI | MR

[10] Krasovskii A. N., Krasovskii N. N., Control Under Lack of Information, Birkhauser, Boston etc., 1995 | MR

[11] Krasovskii N. A., Tarasyev A. M., “Decomposition algorithm of searching equilibrium in a dynamic game”, Mathematical Game Theory and Applications, 3:4 (2011), 49–88 | Zbl

[12] Krasovskii N. A., Tarasyev A. M., Equilibrium Solutions in Dynamic Games, UrGAU, Yekaterinburg, 2015

[13] Krasovskii N. A., Tarasyev A. M., “Equilibrium trajectories in dynamical bimatrix games with average integral payoff functionals”, Automation and Remote Control, 79:6 (2018), 1148–1167 | DOI | MR

[14] Krasovskii N. N., Control of Dynamic System, Nauka, M., 1985 | MR

[15] Krasovskii N. N., Subbotin A. I., Game-Theoretical Control Problems, Springer, New York, 1988 | MR | Zbl

[16] Kryazhimskii A. V., Osipov Yu. S., “On differential–evolutionary games”, Proceedings of the Steklov Institute of Mathematics, 211 (1995), 234–261 | MR

[17] Kurzhanskii A. B., Control and Observation Under Uncertainty, Nauka, M., 1977 | Zbl

[18] Petrosjan L. A., Zenkevich N. A., “Conditions for sustainable cooperation”, Automation and Remote Control, 76:10 (2015), 1894–1904 | DOI | MR

[19] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., The Mathematical Theory of Optimal Processes, Interscience Publishers, New York, 1961 | MR

[20] Subbotin A. I., Minimax Inequalities and Hamilton-Jacobi Equations, Nauka, M., 1991 | MR | Zbl

[21] Subbotin A. I., Tarasyev A. M., “Conjugate derivatives of the value function of a differential game”, Doklady AN SSSR, 283:3 (1985), 559–564 | MR | Zbl

[22] Tarasyev A. M., “Approximation schemes for constructing minimax solutions of Hamilton-Jacobi equations”, Journal of Applied Mathematics and Mechanics, 58:2 (1994), 207–221 | DOI | MR

[23] Tarasyev A. M., A Differential model for a $2 \times 2$-evolutionary game dynamics, IIASA working paper, WP-94-063 (Laxenburg, Austria), 1994

[24] Tarasyev A. M., Watanabe C., “Dynamic optimality principles and sensitivity analysis in models of economic growth”, Nonlinear Analysis, 47:4 (2001), 2309–2320 | DOI | MR | Zbl

[25] Vorobyev N. N., Game Theory for Economists and System Scientists, Nauka, M., 1985 | MR