Stochastic $n$-person prisoner's dilemma: the time-consistency of core and Shapley value
Contributions to game theory and management, Tome 12 (2019), pp. 151-158.

Voir la notice de l'article provenant de la source Math-Net.Ru

A cooperative finite-stage dynamic $n$-person prisoner's dilemma is considered. The time-consistent subset of the core is proposed. The the Shapley value for the stochastic model of the $n$-person prisoner's dilemma is calculated in explicit form.
Keywords: $n$-person prisoner's dilemma, coalition, dynamic game, core, Shapley value, time consistency.
@article{CGTM_2019_12_a8,
     author = {Aleksandra L. Grinikh},
     title = {Stochastic $n$-person prisoner's dilemma: the time-consistency of core and {Shapley} value},
     journal = {Contributions to game theory and management},
     pages = {151--158},
     publisher = {mathdoc},
     volume = {12},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2019_12_a8/}
}
TY  - JOUR
AU  - Aleksandra L. Grinikh
TI  - Stochastic $n$-person prisoner's dilemma: the time-consistency of core and Shapley value
JO  - Contributions to game theory and management
PY  - 2019
SP  - 151
EP  - 158
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CGTM_2019_12_a8/
LA  - en
ID  - CGTM_2019_12_a8
ER  - 
%0 Journal Article
%A Aleksandra L. Grinikh
%T Stochastic $n$-person prisoner's dilemma: the time-consistency of core and Shapley value
%J Contributions to game theory and management
%D 2019
%P 151-158
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CGTM_2019_12_a8/
%G en
%F CGTM_2019_12_a8
Aleksandra L. Grinikh. Stochastic $n$-person prisoner's dilemma: the time-consistency of core and Shapley value. Contributions to game theory and management, Tome 12 (2019), pp. 151-158. http://geodesic.mathdoc.fr/item/CGTM_2019_12_a8/

[1] Hamburger H., “N-person prisoner's dilemma”, Journal of Mathematical Sociology, 3:1 (1973), 27–48 | DOI | MR | Zbl

[2] Petrosyan L. A., Differential games of pursuit, v. 2, World Scientific, 1993, 312 pp. | MR | Zbl

[3] Petrosyan L. A., Grauer L. V., “Multistage games”, Journal of applied mathematics and mechanics, 68:4 (2004), 597–605 | DOI | MR | Zbl

[4] Petrosyan L. A., Pankratova Y. B., “New characteristic function for multistage dynamic games”, Vestnik of Saint Petesrburg University, 14:4 (2018), 316–324 | MR

[5] Petrosyan L. et al., “Strong Strategic Support of Cooperation in Multistage Games”, International Game Theory Review (IGTR), 21:1 (2019), 1–12 | MR | Zbl

[6] Shapley L. S., “A value for n-person games”, Contributions to the Theory of Games, 2:28 (1953), 307–317 | MR

[7] Straffin P. D., Game theory and strategy, New Mathematical Library, 36, 1993 | MR | Zbl