Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CGTM_2014_7_a5, author = {Michael Finus and Pierre von Mouche and Bianca Rundshagen}, title = {On uniqueness of coalitional equilibria}, journal = {Contributions to game theory and management}, pages = {51--60}, publisher = {mathdoc}, volume = {7}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CGTM_2014_7_a5/} }
TY - JOUR AU - Michael Finus AU - Pierre von Mouche AU - Bianca Rundshagen TI - On uniqueness of coalitional equilibria JO - Contributions to game theory and management PY - 2014 SP - 51 EP - 60 VL - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CGTM_2014_7_a5/ LA - en ID - CGTM_2014_7_a5 ER -
Michael Finus; Pierre von Mouche; Bianca Rundshagen. On uniqueness of coalitional equilibria. Contributions to game theory and management, Tome 7 (2014), pp. 51-60. http://geodesic.mathdoc.fr/item/CGTM_2014_7_a5/
[1] Bartl D., “Application of cooperative game solution concepts to a collusive oligopoly game”, School of Business Administration in Karviná, Proceedings of the 30th International Conference Mathematical Methods in Economics, 2012, 14–19
[2] Bloch F., “Non-cooperative models of coalition formation in games with spillovers”, Endogenous Formation of Economic Coalitions, chapter 2, ed. C. Carraro, Edward Elgar, Cheltenham, 2003, 35–79
[3] Finus M., Rundshagen B., “Membership rules and stability of coalition structures in positive externality games”, Social Choice and Welfare, 32 (2009), 389–406 | DOI | MR | Zbl
[4] Folmer H., von Mouche P. H. M., “On a less known {N}ash equilibrium uniqueness result”, Journal of Mathematical Sociology, 28 (2004), 67–80 | DOI | Zbl
[5] Tan K., Yu J., Yuan X., “Existence theorems of {N}ash equilibria for non-cooperative $n$-person games”, International Journal of Game Theory, 24 (1995), 217–222 | DOI | MR | Zbl
[6] Yi S., “Stable coalition structures with externalities”, Games and Economic Behavior, 20 (1997), 201–237 | DOI | MR | Zbl