Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CGTM_2014_7_a23, author = {Osman Palanc{\i} and S{\i}rma Zeynep Alparslan G\"ok and Gerhald Wilhelm Weber}, title = {Interval obligation rules and related results}, journal = {Contributions to game theory and management}, pages = {262--270}, publisher = {mathdoc}, volume = {7}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CGTM_2014_7_a23/} }
TY - JOUR AU - Osman Palancı AU - Sırma Zeynep Alparslan Gök AU - Gerhald Wilhelm Weber TI - Interval obligation rules and related results JO - Contributions to game theory and management PY - 2014 SP - 262 EP - 270 VL - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CGTM_2014_7_a23/ LA - en ID - CGTM_2014_7_a23 ER -
Osman Palancı; Sırma Zeynep Alparslan Gök; Gerhald Wilhelm Weber. Interval obligation rules and related results. Contributions to game theory and management, Tome 7 (2014), pp. 262-270. http://geodesic.mathdoc.fr/item/CGTM_2014_7_a23/
[1] Alparslan Gök S. Z., Cooperative interval games, PhD Dissertation Thesis, Institute of Applied Mathematics, Middle East Technical University, 2009
[2] Alparslan Gök S. Z., Cooperative Interval Games: Theory and Applications, LAP, Germany, 2010
[3] Alparslan Gök S. Z., Branzei R., Tijs S., “Convex Interval Games”, Journal of Applied Mathematics and Decision Sciences, 2009, 342089, 14 pp. | MR | Zbl
[4] Alparslan Gök S. Z., Branzei R., Tijs S., “Big Boss Interval Games”, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 19:1 (2011), 135–149 | DOI | MR | Zbl
[5] Alparslan Gök S. Z., Miquel S., Tijs S., “Cooperation under interval uncertainty”, Mathematical Methods of Operations Research, 69:1 (2009), 99–109 | DOI | MR | Zbl
[6] Alparslan Gök S. Z., Palancı O., Olgun M. O., “Cooperative interval games: mountain situations with interval data”, Journal of Computational and Applied Mathematics, 259 (2014), 622–632 | DOI | MR
[7] Barzily Z., Volkovich Z., Aktake-Öztürk B., Weber G.-W., “On a Minimal Spanning Tree Approach in the Cluster Validation Problem”, Informatica, 20:2 (2009), 187–202 | MR | Zbl
[8] Bird C. G., “On cost allocation for a spanning tree: a game theoretic approach”, Networks, 6 (1976), 335–350 | DOI | MR | Zbl
[9] Borůvka O., “Contribution to the solution of a problem of economical construction of electrical networks”, ElektronickıObzor, 15 (1926), 153–154
[10] Claus A., Kleitman D. J., “Cost allocation for a spanning tree”, Networks, 3 (1973), 289–304 | DOI | MR | Zbl
[11] Diestel R., Graph Theory, Springer-Verlag, 2000 | MR
[12] Dijkstra E. W., “A note on two problems in connection with graphs”, Numerische Mathematik, 1 (1959), 269–271 | DOI | MR | Zbl
[13] Graham R. L., Hell P., “On the history of the minimum spanning tree problem”, Annals of the History of Computing, 7 (1985), 43–57 | DOI | MR | Zbl
[14] Janiak A., Kasperski A., “The minimum spanning tree problem with fuzzy costs”, Fuzzy Optimization and Decision Making, 7 (2008), 105–118 | DOI | MR | Zbl
[15] Kirzhner V., Volkovich Z., Ravve E., Weber G.-W., An Estimate of the Target Function Optimum for the Network Steiner Problem, Preprint number 2012-20, Institute of Applied Mathematics, 2012
[16] Kruskal J. B., “On the shortest spanning subtree of a graph and the traveling salesman problem”, Proc. American Math. Soc., 7 (1956), 48–50 | DOI | MR | Zbl
[17] Montemanni R., “A Benders decomposition approach for the robust spanning tree problem with interval data”, European Journal of Operational Research, 174 (2006), 1479–1490 | DOI | MR | Zbl
[18] Moore R., Methods and applications of interval analysis, SIAM Studies in Applied Mathematics, 1995 | MR
[19] Moretti S., Alparslan Gök S. Z., Branzei R., Tijs S., “Connection Situations under Uncertainty and Cost Monotonic Solutions”, Computers and Operations Research, 38:11 (2011), 1638–1645 | DOI | MR | Zbl
[20] Prim R. C., “Shortest connection networks and some generalizations”, Bell Systems Techn. J., 36 (1957), 1389–1401 | DOI
[21] Suijs J., “Cost allocation in spanning network enterprises with stochastic connection costs”, Games and Economic Behavior, 42 (2003), 156–171 | DOI | MR | Zbl
[22] Tijs S., Introduction to Game Theory, Hindustan Book Agency, India, 2003 | MR | Zbl
[23] Tijs S., Branzei R., Moretti S., Norde H., “Obligation rules for minimum cost spanning tree situations and their monotonicity properties”, European Journal of Operational Research, 175 (2006), 121–134 | DOI | MR | Zbl
[24] , University of Waterloo, Combinatorics Optimization, Discrete Optimization research group http://math.uwaterloo.ca/combinatorics-and-optimization/research/areas/discreteoptimization
[25] Yaman H., Karasan O. E., Pinar M., Minimum Spanning Tree Problem with Interval Data, Technical Report 9909, Bilkent University, Ankara, Turkey, 1999
[26] Yaman H., Karasan O. E., Pinar M., “The robust spanning tree problem with interval data”, Operations Research Letters, 29 (2001), 31–40 | DOI | MR | Zbl