Pricing in queueing systems $M/M/m$ with delays
Contributions to game theory and management, Tome 7 (2014), pp. 214-220

Voir la notice de l'article provenant de la source Math-Net.Ru

A non-cooperative $m$-person game which is related to the queueing system $ M/M/m $ is considered. There are n competing transport companies which serve the stream of customers with exponential distribution with parameters $\mu_i$, $i=1, 2,...,m$ respectively. The stream forms the Poisson process with intensity $\lambda$. The problem of pricing and determining the optimal intensity for each player in the competition is solved.
Keywords: Duopoly, equilibrium prices, queueing system.
@article{CGTM_2014_7_a18,
     author = {Anna V. Melnik},
     title = {Pricing in queueing systems $M/M/m$ with delays},
     journal = {Contributions to game theory and management},
     pages = {214--220},
     publisher = {mathdoc},
     volume = {7},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2014_7_a18/}
}
TY  - JOUR
AU  - Anna V. Melnik
TI  - Pricing in queueing systems $M/M/m$ with delays
JO  - Contributions to game theory and management
PY  - 2014
SP  - 214
EP  - 220
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CGTM_2014_7_a18/
LA  - en
ID  - CGTM_2014_7_a18
ER  - 
%0 Journal Article
%A Anna V. Melnik
%T Pricing in queueing systems $M/M/m$ with delays
%J Contributions to game theory and management
%D 2014
%P 214-220
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CGTM_2014_7_a18/
%G en
%F CGTM_2014_7_a18
Anna V. Melnik. Pricing in queueing systems $M/M/m$ with delays. Contributions to game theory and management, Tome 7 (2014), pp. 214-220. http://geodesic.mathdoc.fr/item/CGTM_2014_7_a18/