Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CGTM_2010_3_a5, author = {Theo S. H. Driessen and Vito Fragnelli and Ilya V. Katsev and Anna B. Khmelnitskaya}, title = {A {Game} {Theoretic} {Approach} to {Co-Insurance} {Situations}}, journal = {Contributions to game theory and management}, pages = {49--66}, publisher = {mathdoc}, volume = {3}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CGTM_2010_3_a5/} }
TY - JOUR AU - Theo S. H. Driessen AU - Vito Fragnelli AU - Ilya V. Katsev AU - Anna B. Khmelnitskaya TI - A Game Theoretic Approach to Co-Insurance Situations JO - Contributions to game theory and management PY - 2010 SP - 49 EP - 66 VL - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CGTM_2010_3_a5/ LA - en ID - CGTM_2010_3_a5 ER -
%0 Journal Article %A Theo S. H. Driessen %A Vito Fragnelli %A Ilya V. Katsev %A Anna B. Khmelnitskaya %T A Game Theoretic Approach to Co-Insurance Situations %J Contributions to game theory and management %D 2010 %P 49-66 %V 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CGTM_2010_3_a5/ %G en %F CGTM_2010_3_a5
Theo S. H. Driessen; Vito Fragnelli; Ilya V. Katsev; Anna B. Khmelnitskaya. A Game Theoretic Approach to Co-Insurance Situations. Contributions to game theory and management, Tome 3 (2010), pp. 49-66. http://geodesic.mathdoc.fr/item/CGTM_2010_3_a5/
[1] Arin J., Feltkamp V., “The nucleolus and kernel of veto-rich transfereble utility games”, International Journal of Game Theory, 26 (1997), 61–73 | DOI | MR | Zbl
[2] Aumann R. J., Maschler M., “Game theoretic analysis of a bankruptcy problem from the Talmud”, Journal of Economic Theory, 36 (1985), 195–213 | DOI | MR | Zbl
[3] Davis M., Maschler M., “The kernel of a cooperative game”, Naval Research Logistics Quarterly, 12 (1965), 223–259 | DOI | MR | Zbl
[4] Deprez O., Gerber H. U., “On convex principle of premium calculation”, Insurance: Mathematics and Economics, 4 (1985), 179–189 | DOI | MR | Zbl
[5] Driessen T. S. H., “Properties of $1$-convex $n$-person games”, OR Spektrum, 7 (1985), 19–26 | DOI | MR | Zbl
[6] Driessen T. S. H., Khmelnitskaya A. B., Sales J., 1-concave basis for TU games, Memorandum 1777, Department of Applied Mathematics, University of Twente, The Netherlands, 2005
[7] Driessen T. S. H., Tijs S. H., “The $\tau$-value, the nucleolus and the core for a subclass of games”, Methods of Operations Research, 46 (1983), 395–406 | MR
[8] Fragnelli V., Marina M. E., “Co-Insurance Games and Environmental Pollution Risk”, Game Practice and the Environment, eds. Carraro C., Fragnelli V., Edward Elgar Publishing, Cheltenham, UK, 2004, 145–163
[9] Gillies D. B., Some theorems on $n$-person games, Ph. D. thesis, Princeton University, 1953 | MR
[10] Kohlberg E., “On the nucleolus of a characteristic function game”, SIAM Journal on Applied Mathematics, 20 (1971), 62–66 | DOI | MR | Zbl
[11] Quant M., Borm P., Reijnierse H., Velzen B. van, “The core cover in relation to the nucleolus and the Weber set”, International Journal of Game Theory, 33 (2005), 491–503 | DOI | MR | Zbl
[12] Schmeidler D., “The nucleolus of a characteristic function game”, SIAM Journal on Applied Mathematics, 17 (1969), 1163–1170 | DOI | MR | Zbl
[13] Shapley L. S., “Cores of convex games”, International Journal of Game Theory, 1 (1971), 11–26 | DOI | MR | Zbl
[14] Sobolev A. I., “The characterization of optimality principles in cooperative games by functional equations”, Mathematical Methods in the Social Sciences, 6, ed. Vorob'ev N. N., Vilnus, 1975, 94–151 (in Russian) | Zbl