Strong Equilibrium in Differential Games
Contributions to game theory and management, Tome 3 (2010), pp. 468-485.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper two definitions of strong equilibrium are considered: strong equilibrium in broad and narrow senses. The main result of the paper is sufficient conditions for strong equilibrium existence in differential games. A special technique based on scalarization of vector criteria is used to construct strong equilibrium in broad sense. This approach is tested on example of the differential game with three players.
Keywords: Nash equilibrium, strong equilibrium, dynamic programming.
@article{CGTM_2010_3_a35,
     author = {Andrey V. Zyatchin},
     title = {Strong {Equilibrium} in {Differential} {Games}},
     journal = {Contributions to game theory and management},
     pages = {468--485},
     publisher = {mathdoc},
     volume = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2010_3_a35/}
}
TY  - JOUR
AU  - Andrey V. Zyatchin
TI  - Strong Equilibrium in Differential Games
JO  - Contributions to game theory and management
PY  - 2010
SP  - 468
EP  - 485
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CGTM_2010_3_a35/
LA  - en
ID  - CGTM_2010_3_a35
ER  - 
%0 Journal Article
%A Andrey V. Zyatchin
%T Strong Equilibrium in Differential Games
%J Contributions to game theory and management
%D 2010
%P 468-485
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CGTM_2010_3_a35/
%G en
%F CGTM_2010_3_a35
Andrey V. Zyatchin. Strong Equilibrium in Differential Games. Contributions to game theory and management, Tome 3 (2010), pp. 468-485. http://geodesic.mathdoc.fr/item/CGTM_2010_3_a35/

[1] Courant R., Partial differential equations, Intersci. Publ., New York–London, 1962 | Zbl

[2] Grauer L. V., Petrosjan L. A., “Strong Nash Equilibrium in Multistage Games”, International Game Theory Review, 4:3 (2002), 255–264 | DOI | MR | Zbl

[3] Isaacs R., Differential games, John Wiley and Sons Inc., New York–London–Sydney, 1965 | MR | Zbl

[4] Zenkevich N. A., Petrosyan L. A., Yeung D. W. K., Dynamic games and management applications, GSOM, SPb., 2009