@article{CGTM_2010_3_a29,
author = {Nina N. Subbotina and Timofei B. Tokmantsev},
title = {The {Method} of {Characteristics} in {Macroeconomic} {Modeling}},
journal = {Contributions to game theory and management},
pages = {399--408},
year = {2010},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CGTM_2010_3_a29/}
}
Nina N. Subbotina; Timofei B. Tokmantsev. The Method of Characteristics in Macroeconomic Modeling. Contributions to game theory and management, Tome 3 (2010), pp. 399-408. http://geodesic.mathdoc.fr/item/CGTM_2010_3_a29/
[1] Al'brekht E. G., “Methods of construction and identification of mathematical models for macroeconomic processes”, Investigated in Russia, 2002 (in Russian) http://zhurnal.ape.relarn.ru/articles/2002/005.pdf
[2] Bellman R., Dynamic programming, Princeton University Press, Princeton, NJ, 1957 | MR | Zbl
[3] Crandall M. G., Lions P.-L., “Viscosity Solutions of Hamilton–Jacobi Equations”, Trans. Am. Math. Soc., 277:1 (1983), 1–42 | DOI | MR | Zbl
[4] Krasovskii N. N., Subbotin A. I., Game-Theoretical Control Problems, Springer, New York, 1988 | MR
[5] Subbotin A. I., Generalized Solutions of First Order PDEs: The dynamical Optimization Perspectives, Birkhäuser, Boston, 1995 | MR
[6] Petrosyan L. A., “Cooperative Stochastic Games”, Adv. in Dynamic Games, Appl. Econ., Manag. Sci., Engin., and Environ. Manag., v. III, Ann. Int. Soc. Dynamic Games, 8, eds. S.. H. A. Muto, L. A. Petrosyan T. E. S. Raghavan, Birkhäuser, Boston, 2006, 139–145 | DOI | MR
[7] Subbotina N. N., “The method of characteristics for Hamilton–Jacobi equations and applications to dynamical optimization”, J. Math. Sci., 135:3 (2006), 2955–3091 | DOI | MR
[8] Subbotina N. N., Tokmantsev T. B., “A numerical method or the minimax solution of the Bellman equation in the Cauchy problem with additional restrictions”, Proc. Steklov Math. Inst., 2006, 222–229 | MR
[9] Subbotina N. N., Tokmantsev T. B., “On the effiency of optimal grid synthsis in the optiaml control problems with fixed terminal time”, Differential Equations, 45:11 (2009), 1651–1662 (in Russian) | DOI | MR | Zbl
[10] Tarasyev A. M., Watanabe C., Zhu B., “Optimal feedbacks in techno-economic dynamics”, Int. J. Technol. Managem., 23:7–8 (2002), 691–717 | DOI
[11] Zhukovskii V. I., Chikrii A. A., Lineino-kvadratichnye differentsial'nye igry, Naukova Dumka, Kiev, 1994