Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CGTM_2009_2_a17, author = {Nikolay V. Kolabutin and Leon A. Petrosyan}, title = {D.\,W.\,K~Yeung {Condition} for {Dynamically} {Stable} {Joint} {Venture}}, journal = {Contributions to game theory and management}, pages = {220--240}, publisher = {mathdoc}, volume = {2}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CGTM_2009_2_a17/} }
TY - JOUR AU - Nikolay V. Kolabutin AU - Leon A. Petrosyan TI - D.\,W.\,K~Yeung Condition for Dynamically Stable Joint Venture JO - Contributions to game theory and management PY - 2009 SP - 220 EP - 240 VL - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CGTM_2009_2_a17/ LA - en ID - CGTM_2009_2_a17 ER -
Nikolay V. Kolabutin; Leon A. Petrosyan. D.\,W.\,K~Yeung Condition for Dynamically Stable Joint Venture. Contributions to game theory and management, Tome 2 (2009), pp. 220-240. http://geodesic.mathdoc.fr/item/CGTM_2009_2_a17/
[1] Zenkevich N. A., Kolabutin N. V., “Quantitative Modeling of Dynamic Stable Joint Venture”, Preprint Volume of the 11th IFAC Symposium Computational Economics and Financial and Industrial Systems IFAC, Inst. Dogus. University, Istanbul, 2007, 68–74 (in Turkey)
[2] Bellman R., Dynamic Programming, Princeton University Press, Princeton, NJ, 1957 | MR | Zbl
[3] Shapley L. S., “A value for $n$-person games”, Contributions to the Theory of Games, v. II, Princeton University Press, Princeton, 1953, 307–317 | MR
[4] Yeung D. W. K., Petrosjan L. A., Cooperative stochastic differential games, 2006
[5] Petrosyan L. A., “Stable solutions of differential games with many partcipants”, Viestnik of Leningrad University, 1977, no. 19, 46–52
[6] Petrosyan L. A., Danilov N. N., “Stability of solutions in nonzero sum differential games with transferable payoffs”, Viestnik of Leningrad University, 1979, no. 1, 52–59 | MR | Zbl
[7] Yeung D. W. K., “An irrational-behavior-proofness condition in cooperative differential games”, International Journal of Game Theory Review, 2007, no. 1, 256–272 | MR