Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CGTM_2009_2_a1, author = {Abdulla A. Azamov and Atamurot Sh. Kuchkarov}, title = {Generalized {`Lion} \&\ {Man{\textquoteright}} {Game} of {R.~Rado}}, journal = {Contributions to game theory and management}, pages = {8--20}, publisher = {mathdoc}, volume = {2}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CGTM_2009_2_a1/} }
Abdulla A. Azamov; Atamurot Sh. Kuchkarov. Generalized `Lion \&\ Man’ Game of R.~Rado. Contributions to game theory and management, Tome 2 (2009), pp. 8-20. http://geodesic.mathdoc.fr/item/CGTM_2009_2_a1/
[1] Littlewood F. I., A Mathematician's Miscellany, Methuen Co., London, 1957
[2] Rado R., “How the leon tames was saved”, Math. Spectrum, 6:1 (1973), 14–18
[3] Flynn J. O., “Lion and Man: the boundari constraint”, SIAM J. Control Optim., 11:3 (1973), 397–411 | MR | Zbl
[4] Flynn J. O., “Pursuit in the circle: lion versus man”, Different. Games and Cont. Theory, 1974, 99–124 | Zbl
[5] Lewin J., “The Lion and Man Problem Revisited”, JOTA, 49:3 (1986), 411–430 | DOI | MR | Zbl
[6] Friedman A., Differential games, Wiley, New York, 1971 | MR | Zbl
[7] Krasovskiy N. N., Subbotin A. I., Game-theoretical control problems, Springer-Verlag, 1988 | MR
[8] Petrosyan L. A., Differential games of pursuit, Leningrad University Press, Leningrad, 1977 (in Russian) | MR
[9] Pontryagin L. S., “Linear differential dames of evasion”, Dokladi Akademii Nauk SSSR, 191:2 (1970), 283–285 (in Russian) | MR | Zbl
[10] Kuchkarov A. Sh., “Solusion of Simple pursuit-Evasion Problem when Evader Moves on Given Curve”, IGTR, 2008 (to appear) http://www.worldscinet.com/iqtr/edioterial/paper
[11] Azamov A. A., “On a Problem of Escape Along a Prescribed Curve”, J. App. Math. and Mash., 46:4 (1986), 553–555 | MR
[12] Azamov A. A., Samatov B. T., $\pi$-strategy, Press of the Nashional University of Uzbekistan, Tashkent, 2000