The stability radius of an efficient solution in minimax Boolean programming problem
Control and Cybernetics, Tome 33 (2004) no. 1, pp. 127-132.

Voir la notice de l'article provenant de la source The Polish Digital Mathematics Library

@article{CC_2004_33_1_a9,
     author = {Emelichev, V.A. and Krichko, N.V. and Nikulin, Y.V.},
     title = {The stability radius of an efficient solution in minimax {Boolean} programming problem},
     journal = {Control and Cybernetics},
     pages = {127--132},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2004},
     zbl = {1115.90035},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CC_2004_33_1_a9/}
}
TY  - JOUR
AU  - Emelichev, V.A.
AU  - Krichko, N.V.
AU  - Nikulin, Y.V.
TI  - The stability radius of an efficient solution in minimax Boolean programming problem
JO  - Control and Cybernetics
PY  - 2004
SP  - 127
EP  - 132
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CC_2004_33_1_a9/
LA  - en
ID  - CC_2004_33_1_a9
ER  - 
%0 Journal Article
%A Emelichev, V.A.
%A Krichko, N.V.
%A Nikulin, Y.V.
%T The stability radius of an efficient solution in minimax Boolean programming problem
%J Control and Cybernetics
%D 2004
%P 127-132
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CC_2004_33_1_a9/
%G en
%F CC_2004_33_1_a9
Emelichev, V.A.; Krichko, N.V.; Nikulin, Y.V. The stability radius of an efficient solution in minimax Boolean programming problem. Control and Cybernetics, Tome 33 (2004) no. 1, pp. 127-132. http://geodesic.mathdoc.fr/item/CC_2004_33_1_a9/