The stability radius of an efficient solution in minimax Boolean programming problem
Control and Cybernetics, Tome 33 (2004) no. 1, pp. 127-132
Cet article a éte moissonné depuis la source The Polish Digital Mathematics Library
@article{CC_2004_33_1_a9,
author = {Emelichev, V.A. and Krichko, N.V. and Nikulin, Y.V.},
title = {The stability radius of an efficient solution in minimax {Boolean} programming problem},
journal = {Control and Cybernetics},
pages = {127--132},
year = {2004},
volume = {33},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CC_2004_33_1_a9/}
}
TY - JOUR AU - Emelichev, V.A. AU - Krichko, N.V. AU - Nikulin, Y.V. TI - The stability radius of an efficient solution in minimax Boolean programming problem JO - Control and Cybernetics PY - 2004 SP - 127 EP - 132 VL - 33 IS - 1 UR - http://geodesic.mathdoc.fr/item/CC_2004_33_1_a9/ LA - en ID - CC_2004_33_1_a9 ER -
Emelichev, V.A.; Krichko, N.V.; Nikulin, Y.V. The stability radius of an efficient solution in minimax Boolean programming problem. Control and Cybernetics, Tome 33 (2004) no. 1, pp. 127-132. http://geodesic.mathdoc.fr/item/CC_2004_33_1_a9/