On Nonlinear Systems of BVPs with Positive Green's Functions
Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 3, pp. 607-642.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

This paper provides some existence and uniqueness theorems for nonlinear systems of BVPs where the Green's functions for the linearization have constant sign (hence these results apply, e.g., to Dirichlet problems for elliptic PDEs as well as to various multipoint BVPs for higher order ODEs). Proofs are based on an original way of using the Linear Functional Analysis of ordered Banach spaces in connection with the traditional topological methods of Nonlinear Functional Analysis.
@article{BUMI_2013_9_6_3_a7,
     author = {Vidossich, Giovanni},
     title = {On {Nonlinear} {Systems} of {BVPs} with {Positive} {Green's} {Functions}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {607--642},
     publisher = {mathdoc},
     volume = {Ser. 9, 6},
     number = {3},
     year = {2013},
     zbl = {0253.65047},
     mrnumber = {3202843},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_3_a7/}
}
TY  - JOUR
AU  - Vidossich, Giovanni
TI  - On Nonlinear Systems of BVPs with Positive Green's Functions
JO  - Bollettino della Unione matematica italiana
PY  - 2013
SP  - 607
EP  - 642
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_3_a7/
LA  - en
ID  - BUMI_2013_9_6_3_a7
ER  - 
%0 Journal Article
%A Vidossich, Giovanni
%T On Nonlinear Systems of BVPs with Positive Green's Functions
%J Bollettino della Unione matematica italiana
%D 2013
%P 607-642
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_3_a7/
%G en
%F BUMI_2013_9_6_3_a7
Vidossich, Giovanni. On Nonlinear Systems of BVPs with Positive Green's Functions. Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 3, pp. 607-642. http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_3_a7/

[1] S. Ahmad and A.C. Lazer, Positive operators and Sturmian theory of non selfadjoint second-order sysstems, pp. 25-42 in: V. LAKSHMIKANTHAM, ``Nonlinear Equa-tions in Abstract Spaces'', Academic Press, New York, 1978. | MR

[2] J. Albrecht, Zur Wahl der Norm beim Iterationsverfahren für Randwertaufgaben, ZAMM 52 (1972), 626-628. | DOI | MR | Zbl

[3] H. Amann, On the unique solvability of semi-linear operator equations in Hilbert spaces, J. Math. Pures Appl. 61 (1982), 149-175. | MR | Zbl

[4] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Review 18 (1976), 620-709. | DOI | MR | Zbl

[5] H. Brezis, ``Analyse fonctionelle (Théorie et applications), Masson, Paris, 1983. | MR

[6] W.A. Coppel, ``Disconjugacy'', LN in Math. 220, Springer, New York, 1971. | MR

[7] G. Degla, On the principal eigenvalue of disconjugate BVPs with $L^1$-coefficients, Adv. Nonlinear Stud. 2 (2002), 19-39. | DOI | MR | Zbl

[8] J. Dugundji, ``Topology'', Allyn and Bacon, Boston, 1966. | MR

[9] J.J. Duistermaat and J.A.C. Kolk, ``Multidimensional Real Analysis'', voll. I-II, Cambridge Univ. Press, Cambridge, 2004. | DOI | MR | Zbl

[10] U. Elias, ``Oscillation theory of Two-Term Differential Equations'', Kluwer Academic Publishers, Dodrecht, 1997. | DOI | MR | Zbl

[11] D.D. Hai and K. Schmitt, Existence and uniqueness results for nonlinear boundary value problems, Rocky Mountain J. Math. 24(1994), 77-91. | DOI | MR | Zbl

[12] A. Hammerstein, Nichtlineare Integralgleichungen nebst Anwendungen, Acta Math. 54 (1930), 117-176. | DOI | MR

[13] R.A. Horn and C.R. Johnson, ``Matrix Analysis'', Cambridge Univ. Press, Cambridge, 1985. | DOI | MR | Zbl

[14] J.L. Kazdan and F.W. Warner, Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math. 28 (1975), 567-597. | DOI | MR | Zbl

[15] M.A. Krasnoselski, On the theory of completely continuous fields (in Russian), Ukrain. Mat. Ž 3 (1951), 174-183. | MR

[16] M.A. Krasnoselski, Je.A. Lifshits and A.V. Sobolev, ``Positive Linear Systems (The Method of Positive Operators)'', Heldermann Verlag, Berlin, 1989. | MR

[17] M.A. Krasnoselski, ``Topological Methods in the Theory of Nonlinear Integral Equations'', Pergamon Press, New York, 1963.

[18] A. Lasota, Une généralisation du premier théorème de Fredholm et ses applications à la théorie des équations différentielles ordinaires, Annales Polon. Math. 18 (1966), 65-77. | fulltext EuDML | DOI | MR | Zbl

[19] A. Lasota, Sur l'existence et l'unicité des solutions du problème aux limites de Nicoletti pour un système d'équations différentielles ordinaires, Zeszyty Nauk. UJ, Prace Mat. 11 (1966), 41-48. | MR | Zbl

[20] J. Mawhin, Two point boundary value problems for nonlinear second order differential equations in Hilbert space, Tôhoku Math. J. 32 (1980), 225-233. | DOI | MR | Zbl

[21] J. Tippett, A existence-uniqueness theorem for two point baoundary value problems, SIAM J. Math. Anal. 5 (1974), 153-157. | DOI | MR | Zbl

[22] G. Vidossich, A general existence theorem for boundary value problems for ordinary differential equations, Nonlinear Anal. TMA 15 (1990), 897-914. | DOI | MR | Zbl

[23] G. Vidossich, ``Lectures on the Topological Degree'', in the (hopefully!) final preparation.