Reciprocal Formulae on Binomial Convolutions of Hagen-Rothe Type
Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 3, pp. 591-605.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

By means of duplicate inverse series relations, we investigate dual relations of four binomial convolution identities. Four classes of reciprocal formulae on binomial convolutions of Hagen-Rothe type are established. They reflect certain “reciprocity” on the Hagen-Rothe-like convolutions in the sense that each binomial summation involved has no closed form in general, but their sum and difference in pairs do have simple expressions in a single term of binomial coefficients.
@article{BUMI_2013_9_6_3_a6,
     author = {Chu, Wenchang},
     title = {Reciprocal {Formulae} on {Binomial} {Convolutions} of {Hagen-Rothe} {Type}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {591--605},
     publisher = {mathdoc},
     volume = {Ser. 9, 6},
     number = {3},
     year = {2013},
     zbl = {0793.15001},
     mrnumber = {3202842},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_3_a6/}
}
TY  - JOUR
AU  - Chu, Wenchang
TI  - Reciprocal Formulae on Binomial Convolutions of Hagen-Rothe Type
JO  - Bollettino della Unione matematica italiana
PY  - 2013
SP  - 591
EP  - 605
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_3_a6/
LA  - en
ID  - BUMI_2013_9_6_3_a6
ER  - 
%0 Journal Article
%A Chu, Wenchang
%T Reciprocal Formulae on Binomial Convolutions of Hagen-Rothe Type
%J Bollettino della Unione matematica italiana
%D 2013
%P 591-605
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_3_a6/
%G en
%F BUMI_2013_9_6_3_a6
Chu, Wenchang. Reciprocal Formulae on Binomial Convolutions of Hagen-Rothe Type. Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 3, pp. 591-605. http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_3_a6/

[1] G. E. Andrews - W. H. Burge, Determinant identities, Pacific J. Math., 158, 1 (1993), 1-14. | MR | Zbl

[2] W. Chu, An Algebraic Identity and Its Application: The unification of some matrix inverse pairs, Pure Math. & Appl., 4, 2 (1993), 175-190. | MR | Zbl

[3] W. Chu, Inversion Techniques and Combinatorial Identities: A quick introduction to hypergeometric evaluations, Math. Appl., 283 (1994), 31-57. | MR | Zbl

[4] W. Chu, Binomial convolutions and determinant identities, Discrete Math., 204, 1-3 (1999), 129-153. | DOI | MR

[5] W. Chu, Some binomial convolution formulas, Fibonacci Quarterly, 40, 1 (2002), 19- 32. | MR | Zbl

[6] W. Chu, Duplicate Inverse Series Relations and Hypergeometric Evaluations with $z = 1/4$, Boll. Un. Mat. Ital., B-7 (2002, Serie VIII), 585-604. | fulltext bdim | fulltext EuDML | MR | Zbl

[7] W. Chu, Inversion Techniques and Combinatorial Identities: Balanced Hypergeo- metric Series, Rocky Mountain J. of Math., 32, 2 (2002), 561-587. | MR | Zbl

[8] W. Chu - L. C. Hsu, Some new applications of Gould-Hsu inversions, J. Combinatorics, Information & System Sciences, 14, 1 (1990), 1-4. | MR | Zbl

[9] W. Chu - C. A. Wei, Legendre Inversions and Balanced Hypergeometric Series Identities, Discrete Mathematics, 308, 4 (2008), 541-549. | DOI | MR | Zbl

[10] H. W. Gould, Some generalizations of Vandermonde's convolution, Amer. Math. Month., 63, 1 (1956), 84-91. | DOI | MR | Zbl

[11] H. W. Gould - L. C. Hsu, Some new inverse series relations Duke Math. J., 40 (1973), 885-891. | MR | Zbl

[12] R. L. Graham - D. E. Knuth - O. Patashnik, Concrete Mathematics, Addison-Wesley Publ. Company, Reading, Massachusetts, 1989. | MR

[13] D. Merlini - R. Sprugnoli - M. C. Verri, Combinatorial sums and implicit Riordan arrays, Discrete Mathematics, 309 (2009), 475-486. | DOI | MR | Zbl

[14] J. Riordan, Combinatorial Identities, John Wiley & Sons, Inc. 1968. | MR

[15] R. Sprugnoli, Riordan arrays and the Abel-Gould identity, Discrete Math., 142 (1995), 213-233. | DOI | MR