The Groups of Isometries of the Homogeneous Tree and Non-Unimodularity
Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 3, pp. 565-577.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this paper we describe the groups of isometries acting transitively on the homogeneous tree of degree three. This description implies that the following three properties are equivalent: amenability, non-unimodularity and action without inversions. Moreover, we exhibit examples of non-unimodular transitive groups of isometries of a homogeneous tree of degree $q + 1 > 3$ which do not fix any point of the boundary of the tree.
@article{BUMI_2013_9_6_3_a4,
     author = {Nebbia, Claudio},
     title = {The {Groups} of {Isometries} of the {Homogeneous} {Tree} and {Non-Unimodularity}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {565--577},
     publisher = {mathdoc},
     volume = {Ser. 9, 6},
     number = {3},
     year = {2013},
     zbl = {1154.22301},
     mrnumber = {3202840},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_3_a4/}
}
TY  - JOUR
AU  - Nebbia, Claudio
TI  - The Groups of Isometries of the Homogeneous Tree and Non-Unimodularity
JO  - Bollettino della Unione matematica italiana
PY  - 2013
SP  - 565
EP  - 577
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_3_a4/
LA  - en
ID  - BUMI_2013_9_6_3_a4
ER  - 
%0 Journal Article
%A Nebbia, Claudio
%T The Groups of Isometries of the Homogeneous Tree and Non-Unimodularity
%J Bollettino della Unione matematica italiana
%D 2013
%P 565-577
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_3_a4/
%G en
%F BUMI_2013_9_6_3_a4
Nebbia, Claudio. The Groups of Isometries of the Homogeneous Tree and Non-Unimodularity. Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 3, pp. 565-577. http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_3_a4/

[1] A. Figà-Talamanca - C. Nebbia, Harmonic analysis and representation theory for groups acting on homogeneous trees, London Mathematical Society Lecture Note Series, vol. 162, Cambridge University Press (Cambridge, 1991). | DOI | MR | Zbl

[2] Steven A. Gaal, Linear analysis and representation theory, Springer-Verlag (New York, 1973), Die Grundlehren der mathematischen Wissenschaften, Band 198. | MR | Zbl

[3] C. Nebbia, Amenability and Kunze-Stein property for groups acting on a tree, Pacific J. Math., 135, n. 2 (1988), 371-380. | MR | Zbl

[4] J. Tits, Sur le groupe des automorphismes d'un arbre, Essays on topology and related topics (Mémoires dédiés à Georges de Rham), Springer (New York, 1970), 188-211. | MR