Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2013_9_6_3_a3, author = {Penegini, Matteo}, title = {On the {Classification} of {Surfaces} of {General} {Type} with $p_g = q = 2$}, journal = {Bollettino della Unione matematica italiana}, pages = {549--563}, publisher = {mathdoc}, volume = {Ser. 9, 6}, number = {3}, year = {2013}, zbl = {1118.14041}, mrnumber = {3202839}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_3_a3/} }
TY - JOUR AU - Penegini, Matteo TI - On the Classification of Surfaces of General Type with $p_g = q = 2$ JO - Bollettino della Unione matematica italiana PY - 2013 SP - 549 EP - 563 VL - 6 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_3_a3/ LA - en ID - BUMI_2013_9_6_3_a3 ER -
Penegini, Matteo. On the Classification of Surfaces of General Type with $p_g = q = 2$. Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 3, pp. 549-563. http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_3_a3/
[BCP06] Complex surfaces of general type: some recent progress. Global aspects of complex geometry. Springer, Berlin (2006), 1-58. | DOI | MR | Zbl
- - ,[BCG08] The classification of surfaces with $p_g = q = 0$ isogenous to a product. Pure Appl. Math. Q., 4, no. 2, part 1 (2008), 547-586. | DOI | MR | Zbl
- - ,[BP11] The classification of minimal product-quotient surfaces with $p_g = 0$. Mathematics of Computation 81, 280 (2012), 2389-2418. | DOI | MR | Zbl
- ,[B78] Surfaces Algébriques Complex. Astérisque 54, Paris (1978). | MR
,[B82] L'inegalite $p_g \geq 2q - 4$ pour les surface de type general. Bull. Soc. Math. France 110, (1982), 344-346. | MR
,[Bol88] On binary sextic with linear transformations into themselves. Amer. J. Math. 10, (1888), 47-70. | DOI | MR | Zbl
,[BW74] Local contributions to global deformations of surfaces. Invent. Math. 26 (1974), 67-88. | fulltext EuDML | DOI | MR | Zbl
- ,[CP09] The classification of surfaces with $p_g = q = 1$ isogenous to a product of curves. Adv. Geom., Vol. 9, no. 2 (2009), 233-256. | DOI | MR | Zbl
- ,[Ca89] Everywhere non reduced moduli spaces. Invent. Math. 98 (1989), 293-310. | fulltext EuDML | DOI | MR | Zbl
,[Ca91] Moduli and classification of irregular Kaehler manifolds (and algebraic varieties) with Albanese general type fibrations. Invent. Math. 104 (1991), 263-289. | fulltext EuDML | DOI | MR | Zbl
,[Ca00] Fibred surfaces, varieties isogenous to a product and related moduli spaces. Amer. J. Math. 122, (2000), 1-44. | MR | Zbl
,[Ca11] A superficial working guide to deformations and moduli, e-print arXiv:1106.1368, to appear in the Handbook of Moduli, a volume in honour of David Mumford, to be published by International Press. | MR
,[CCML98] On the classification of irregular surfaces of general type with nonbirational bicanonical map. Trans. Amer. Math. Soc. 350, no. 1 (1998), 275-308. | DOI | MR | Zbl
- - ,[CH06] A Surface of general type with $p_g = q = 2$ and $K^2 = 5$. Pacific. J. Math. 223 no. 2 (2006), 219-228. | DOI | MR | Zbl
- ,[CML02] On surfaces with $p_g = q = 2$ and non-birational bicanonical map. Adv. Geom. 2, n. 3 (2002), 281-300. | fulltext EuDML | DOI | MR | Zbl
- ,[CMLP13] The classification of minimal irregular surfaces of general type with $K^2 = 2p_g$, preprint arXiv:1307.6228. | DOI | MR
- - ,[Gie77] Global moduli for surfaces of general type. Invent. Math 43, no. 3 (1977), 233-282. | fulltext EuDML | DOI | MR | Zbl
,[HP02] Surfaces with $p_g = q = 3$. Trans. Amer. Math. Soc. 354 (2002), 2631-2638. | DOI | MR | Zbl
- ,[HM99] Quadruple covers of algebraic varieties. J. Algebraic Geom. 8 (1999). | MR | Zbl
- ,[M03] Surfaces of Albanese General type and the Severi conjecture. Math. Nachr., Vol. 261/262 (2003), 105-122. | DOI | MR | Zbl
,[M85] Triple covers in algebraic geometry. Amer. J. of Math. 107 (1985), 1123-1158. | DOI | MR | Zbl
,[MP10] Standard isotrivial fibrations with $p_g = q = 1$ II. AG/0805.1424.
- ,[Pi02] Surfaces with $p_g = q = 3$. Manuscripta Math. 108, no. 2 (2002), 163-170. | DOI | MR | Zbl
,[Pe11] The classification of isotrivially fibred surfaces with $p_g = q = 2$. Collect. Math. 62, No. 3 (2011), 239-274. | DOI | MR | Zbl
,[PP10] On surfaces with $p_g = q = 2$, $K^2 = 5$ and Albanese map of degree 3. e-print arXiv:1011.4388 (2010), to appear in Osaka J. Math. | MR
- ,[PP11] On surfaces with $p_g = q = 2$, $K^2 = 6$ and Albanese map of degree 2. e-print arXiv:1105.4983 (2011), to appear in Canad. J. Math. | DOI | MR
- ,[PP12] A new family of surfaces with $p_g = q = 2$ and $K^2 = 6$ whose Albanese map has degree 4. e-print arXiv:1207.3526. | DOI | MR | Zbl
- ,[Z03] Surfaces with $p_g = q = 2$ and an irrational pencil. Canad. J. Math. Vol. 55 (2003), 649-672. | DOI | MR | Zbl
,