Numerical Approximation of Matrix Functions for Fractional Differential Equations
Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 3, pp. 793-815.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this paper relevant insights are given on the connection between matrix functions and the solution of differential equations of fractional order. This nexus only recently has been disclosed and is gaining weight in the current research. We present here a review on the basics of fractional calculus and matrix function approximations, together with the main results my coauthors and me have given to the subject in the recent works [13, 14, 15, 16, 32].
In questo lavoro si presentano delle connessioni rilevanti tra le funzioni di matrice e la soluzione di equazioni differenziali di ordine frazionario. Questo nesso è stato notato solo recentemente ed ora riscuote notevole interesse. Si presenta qui una rassegna dei fondamenti del calcolo frazionario e della teoria dell'approssimazione di funzioni di matrice; si mostrano inoltre i contributi che, insieme ad i miei coautori, abbiamo recentemente elaborato su questo argomento [13, 14, 15, 16, 32].
@article{BUMI_2013_9_6_3_a20,
     author = {Popolizio, Marina},
     title = {Numerical {Approximation} of {Matrix} {Functions} for {Fractional} {Differential} {Equations}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {793--815},
     publisher = {mathdoc},
     volume = {Ser. 9, 6},
     number = {3},
     year = {2013},
     zbl = {1145.65022},
     mrnumber = {3202856},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_3_a20/}
}
TY  - JOUR
AU  - Popolizio, Marina
TI  - Numerical Approximation of Matrix Functions for Fractional Differential Equations
JO  - Bollettino della Unione matematica italiana
PY  - 2013
SP  - 793
EP  - 815
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_3_a20/
LA  - en
ID  - BUMI_2013_9_6_3_a20
ER  - 
%0 Journal Article
%A Popolizio, Marina
%T Numerical Approximation of Matrix Functions for Fractional Differential Equations
%J Bollettino della Unione matematica italiana
%D 2013
%P 793-815
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_3_a20/
%G en
%F BUMI_2013_9_6_3_a20
Popolizio, Marina. Numerical Approximation of Matrix Functions for Fractional Differential Equations. Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 3, pp. 793-815. http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_3_a20/

[1] Benzi M. and Bertaccini D., Block Preconditioning of Real-Valued Iterative Algorithms for Complex Linear Systems, IMA Journal of Numerical Analysis, 28, 598-618 (2008). | DOI | MR | Zbl

[2] Bertaccini D., Efficient preconditioning for sequences of parametric complex symmetric linear systems, Electronic Transactions on Numerical Analysis, 18, 49-64 (2004). | fulltext EuDML | MR | Zbl

[3] Bertaccini D. and Popolizio M., Adaptive updating techniques for the approximation of functions of large matrices, preprint (2012).

[4] Cody W. J., Meinardus G. and Varga R. S., Chebyshev rational approximations to $e^{-x}$ in $[0, +\infty)$ and applications to heat-conduction problems, J. Approximation Theory, 2, 50-65 (1969). | DOI | MR | Zbl

[5] Del Buono N., Lopez L. and Peluso R., Computation of the exponential of large sparse skew-symmetric matrices, SIAM J. Sci. Comput., 27 (1), 278-293 (2005). | DOI | MR | Zbl

[6] Del Buono N., Lopez L. and Politi T., Computation of functions of Hamiltonian and skew-symmetric matrices, Math. Comput. Simulation, 79 (4), 1284-1297 (2008). | DOI | MR | Zbl

[7] Deng W., Numerical algorithm for the time fractional Fokker-Planck equation, Journal of Computational Physics, 227, 1510-1522 (2007). | DOI | MR | Zbl

[8] Diethelm K., The analysis of fractional differential equations, Lecture Notes in Mathematics, Springer-Verlag, Berlin (2010). | DOI | MR | Zbl

[9] Garrappa R., On linear stability of predictor-corrector algorithms for fractional differential equations, International Journal of Computer Mathematics, 87 (10), 2281-2290 (2010). | DOI | MR | Zbl

[10] Garrappa R., On some generalizations of the implicit Euler method for discontinuous fractional differential equations, Mathematics and Computers in Simulation, , 95 (2014), 213-228. | DOI | MR

[11] Garrappa R., Stability-preserving high-order methods for multiterm fractional differential equations, International Journal of Bifurcation and Chaos, 22 (4) (2012), 1-13. | DOI | MR | Zbl

[12] Garrappa R., A family of Adams exponential integrators for fractional linear systems, Computers and Mathematics with Applications, (2013), in print, doi: http://dx.doi.org/10.1016/j.camwa.2013.01.022 | DOI | MR | Zbl

[13] Garrappa R. and Popolizio M., On the use of matrix functions for fractional partial differential equations, Math. Comput. Simulation, 81 (5), (2011), 1045-1056. | DOI | MR | Zbl

[14] Garrappa R. and Popolizio M., Generalized exponential time differencing methods for fractional order problems, Comput. Math. Appl., 62(3) (2011), 876-890 | DOI | MR | Zbl

[15] Garrappa R. and Popolizio M., On accurate product integration rules for linear fractional differential equations, J. Comput. Appl. Math., 235 (5) (2011), 1085-1097. | DOI | MR | Zbl

[16] Garrappa R. and Popolizio M., Evaluation of generalized Mittag-Leffler functions on the real line, Adv. Comput. Math., 39 (1) (2013), 205-225. | DOI | MR | Zbl

[17] Golub G.H. and Van Loan C.F., Matrix Computations, Johns Hopkins Studies in the Mathematical Sciences (1996). | MR

[18] Gorenflo R. and Mainardi F., Some recent advances in theory and simulation of fractional diffusion processes., J. Comput. Appl. Math., 229 (2) (2009), 400-415. | DOI | MR | Zbl

[19] Higham N. J., Functions of Matrices: Theory and Computation, SIAM (2008). | DOI | MR | Zbl

[20] Hochbruck M. and Lubich C., On Krylov subspace approximations to the matrix exponential operator, SIAM Journal on Numerical Analysis, 34 (1987), 1911-1925. | DOI | MR | Zbl

[21] Hochbruck M. and Ostermann A., Exponential integrators, Acta Numerica, 19 (2010), 209-286. | DOI | MR | Zbl

[22] Kilbas A. A., Srivastava H. M. and Trujillo J. J., Theory and applications of fractional differential equations, vol. 204 of North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam (2006). | MR | Zbl

[23] Linz P., Analytical and numerical methods for Volterra equations, SIAM Studies in Applied Mathematics, Philadelphia, PA (1985). | DOI | MR | Zbl

[24] Lopez L. and Simoncini V., Analysis of projection methods for rational function approximation to the matrix exponential, SIAM J. Numer. Anal., 44 (2) (2006), 613-635. | DOI | MR | Zbl

[25] Lopez L. and Simoncini V., Preserving geometric properties of the exponential matrix by block Krylov subspace methods, BIT, 46 (4) (2006), 813-830. | DOI | MR | Zbl

[26] Magnus A. P., Asymptotics and super asymptotics for best rational approximation error norms to the exponential function (the ``1=9'' problem) by the Carathéodory-Fejér method, Nonlinear numerical methods and rational approximation, 296 (II) (1994), 173-185. | MR

[27] Moler C. and Van Loan C., Nineteen dubious ways to compute the exponential of a matrix, SIAM Review, 20 (4) (1978), 801-836. | DOI | MR | Zbl

[28] Moler C. and Van Loan C., Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, SIAM Review, 45 (1) (2003), 3-49. | DOI | MR | Zbl

[29] Moret I., Rational Lanczos approximations to the matrix square root and related functions, Numerical Linear Algebra with Applications, 16 (2009), 431-445. | DOI | MR | Zbl

[30] Moret I. and Novati P., RD-Rational Approximations of the Matrix Exponential, BIT, Numerical Mathematics, 44 (2004), 595-615. | DOI | MR | Zbl

[31] Moret I. and Novati P., On the convergence of Krylov subspace methods for matrix Mittag-Leffler functions, SIAM Journal on Numerical Analysis, 49 (2011), 2144-2164 | DOI | MR | Zbl

[32] Moret I. and Popolizio M., The restarted shift-and-invert Krylov method for matrix functions, Numerical Linear Algebra with Applications, 21 (2014), 68-80. | DOI | MR | Zbl

[33] Petrushev P.P. and Popov V.A., Rational approximation of real function, Cambridge University Press, Cambridge (1987). | MR | Zbl

[34] Podlubny I., Fractional differential equations, Mathematics in Science and Engineering, Academic Press Inc., San Diego, CA (1999). | MR | Zbl

[35] Podlubny I. and Kacenak M., Matlab implementation of the Mittag-Leffler function, available online: http://www.mathworks.com (2005).

[36] Politi T. and Popolizio M., Schur Decomposition Methods for the Computation of Rational Matrix Functions, Computational science-ICCS 2006. Part IV, Springer, 3994, 708-715 (2006). | Zbl

[37] Popolizio M., Tecniche di accelerazione per approssimare l'esponenziale di matrice, La Matematica nella Società e nella Cultura, Rivista dell'Unione Matematica Italiana, Serie I, Vol. II, Agosto (2009), 275-278. | fulltext bdim | fulltext EuDML | MR

[38] Popolizio M. and Simoncini V., Acceleration Techniques for Approximating the Matrix Exponential Operator, SIAM J. Matrix Analysis and Appl., 30 (2008), 657-683. | DOI | MR | Zbl

[39] Saad Y., Analysis of some Krylov subspace approximations to the matrix exponential operator, SIAM Journal on Numerical Analysis, 29 (1992), 209-228. | DOI | MR | Zbl

[40] Trefethen L. N., Rational Chebyshev approximation on the unit disk, Numer. Math., 37 (2) (1981), 297-320 | fulltext EuDML | DOI | MR | Zbl

[41] Trefethen L. N., Circularity of the error curve and sharpness of the CF method in complex Chebyshev approximation, SIAM J. Numer. Anal., 20 (6) (1983), 1258-1263. | DOI | MR | Zbl

[42] Trefethen L. N., Weideman J. A. C. and Schmelzer T., Talbot quadratures and rational approximations, BIT, 46 (3) (2006), 653-670. | DOI | MR | Zbl

[43] Van Den Eshof J. and Hochbruck M., Preconditioning Lanczos approximations to the matrix exponential, SIAM Journal on Scientific Computing, 27 (2006), 1438-1457. | DOI | MR | Zbl

[44] Weideman J. A. C. and Trefethen L. N., Parabolic and hyperbolic contours for computing the Bromwich integral, Mathematics of Computation, 78 (2007), 1341-1358. | DOI | MR | Zbl