Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2013_9_6_3_a2, author = {Tosin, Andrea}, title = {Un approccio multiscala alla dinamica delle folle mediante misure che evolvono nel tempo}, journal = {Bollettino della Unione matematica italiana}, pages = {531--548}, publisher = {mathdoc}, volume = {Ser. 9, 6}, number = {3}, year = {2013}, zbl = {1145.35001}, mrnumber = {3202838}, language = {it}, url = {http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_3_a2/} }
TY - JOUR AU - Tosin, Andrea TI - Un approccio multiscala alla dinamica delle folle mediante misure che evolvono nel tempo JO - Bollettino della Unione matematica italiana PY - 2013 SP - 531 EP - 548 VL - 6 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_3_a2/ LA - it ID - BUMI_2013_9_6_3_a2 ER -
Tosin, Andrea. Un approccio multiscala alla dinamica delle folle mediante misure che evolvono nel tempo. Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 3, pp. 531-548. http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_3_a2/
[1] Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, second edition, 2008. | MR | Zbl
- - ,[2] Non-local first-order modelling of crowd dynamics: A multidimensional framework with applications, Appl. Math. Model., 35 (1) (2011), 426-445. | DOI | MR | Zbl
- - - ,[3] An Eulerian approach to the analysis of Krause's consensus models, SIAM J. Control Optim., 50 (1) (2012), 243-265. | DOI | MR | Zbl
- - ,[4] Existence of nonclassical solutions in a pedestrian flow model, Nonlinear Anal. Real World Appl., 10 (5) (2009), 2716-2728. | DOI | MR | Zbl
- ,[5] First-order macroscopic modelling of human crowd dynamics, Math. Models Methods Appl. Sci., 18 (2008), 1217-1247. | DOI | MR | Zbl
- ,[6] Multiscale Modeling of Pedestrian Dynamics. In preparazione. | DOI | MR | Zbl
- - ,[7] Modeling self-organization in pedestrians and animal groups from macroscopic and microscopic viewpoints. In G. Naldi, L. Pareschi and G. Toscani, editors Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, Modeling and Simulation in Science, Engineering and Technology, pages 337-364. Birkhäuser, Boston, 2010. | DOI | MR | Zbl
- - ,[8] Multiscale modeling of granular flows with application to crowd dynamics, Multiscale Model. Simul., 9 (1) (2011), 155-182. | DOI | MR | Zbl
- - ,[9] How can macroscopic models reveal self-organization in traffic flow?, Proceedings of the 51st IEEE Conference on Decision and Control, pages 6989-6994, Maui, HI, USA, December 2012.
- - ,[10] Numerical methods for conservation laws, Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, second edition, 1992. | DOI | MR
,[11] Handling congestion in crowd motion modeling, Netw. Heterog. Media, 6 (3) (2011), 485-519. | DOI | MR | Zbl
- - ,[12] Transport equation with nonlocal velocity in Wasserstein spaces: convergence of numerical schemes, Acta Appl. Math., 124 (1) (2013), 73-105. | DOI | MR | Zbl
- ,[13] Time-evolving measures and macroscopic modeling of pedestrian flow, Arch. Ration. Mech. Anal., 199 (3) (2011), 707-738. | DOI | MR | Zbl
- ,[14] Pedestrian flows in bounded domains with obstacles, Contin. Mech. Thermodyn., 21 (2) (2009), 85-107. | DOI | MR | Zbl
- ,[15] What is Life? Mind and Matter,Cambridge University Press, 1967.
,[16] Existence and approximation of probability measure solutions to models of collective behaviors, Netw. Heterog. Media, 6 (3) (2011), 561-596 | DOI | MR | Zbl
- ,