Noether's Theorem on Gonality of Plane Curves for Hypersurfaces
Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 3, pp. 781-791.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

A well-known theorem of Max Noether asserts that the gonality of a smooth curve $C \subset \mathbb{P}^{2}$ of degree $d \geq 4$ is $d - 1$, and any morphism $C \to \mathbb{P}^{1}$ of minimal degree is obtained as the projection from one point of the curve. The most natural extension of gonality to n-dimensional varieties $X$ is the degree of irrationality, that is the minimum degree of a dominant rational map $X -- \to \mathbb{P}^{n}$. This paper reports on the joint work [4] with Renza Cortini and Pietro De Poi, which aims at extending Noether's Theorem to smooth hypersurfaces $X \subset \mathbb{P}^{n+1}$ in terms of degree of irrationality. We show that both generic surfaces in $\mathbb{P}^{3}$ and generic threefolds in $\mathbb{P}^{4}$ of sufficiently large degree $d$ have degree of irrationality $d - 1$, and any dominant rational map of minimal degree is obtained as the projection from one point of the variety. Furthermore, we classify the exceptions admitting maps of minimal degree smaller than $d - 1$, and we show that their degree of irrationality is $d - 2$.
@article{BUMI_2013_9_6_3_a19,
     author = {Bastianelli, Francesco},
     title = {Noether's {Theorem} on {Gonality} of {Plane} {Curves} for {Hypersurfaces}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {781--791},
     publisher = {mathdoc},
     volume = {Ser. 9, 6},
     number = {3},
     year = {2013},
     zbl = {0888.14010},
     mrnumber = {3202855},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_3_a19/}
}
TY  - JOUR
AU  - Bastianelli, Francesco
TI  - Noether's Theorem on Gonality of Plane Curves for Hypersurfaces
JO  - Bollettino della Unione matematica italiana
PY  - 2013
SP  - 781
EP  - 791
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_3_a19/
LA  - en
ID  - BUMI_2013_9_6_3_a19
ER  - 
%0 Journal Article
%A Bastianelli, Francesco
%T Noether's Theorem on Gonality of Plane Curves for Hypersurfaces
%J Bollettino della Unione matematica italiana
%D 2013
%P 781-791
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_3_a19/
%G en
%F BUMI_2013_9_6_3_a19
Bastianelli, Francesco. Noether's Theorem on Gonality of Plane Curves for Hypersurfaces. Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 3, pp. 781-791. http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_3_a19/

[1] E. Ballico, On the gonality of curves in $\mathbb{P}^n$, Comment. Math. Univ. Carolin. 38(1) (1997), 177-186. | fulltext EuDML | MR | Zbl

[2] B. Basili, Indice de Clifford des intersections complètes de l'espace, Bull. Soc. Math. France 124(1) (1996), 61-95. | fulltext EuDML | MR | Zbl

[3] F. Bastianelli, On symmetric products of curves, Trans. Amer. Math. Soc. 364(5) (2012), 2493-2519. | DOI | MR | Zbl

[4] F. Bastianelli, R. Cortini and P. De Poi, The gonality theorem of Noether for hypersurfaces, J. Algebraic Geom., to appear, doi:10.1090/S1056-3911-2013-00603-7. | DOI | MR | Zbl

[5] C. Ciliberto, Alcune applicazioni di un classico procedimento di Castelnuovo, in Seminari di geometria, 1982-1983 (Bologna, 1982/1983), 17-43, Univ. Stud. Bologna, Bologna, 1984.

[6] H. Clemens, Curves in generic hypersurfaces, Ann. Sci. École Norm. Sup. 19(4) (1986), 629-636. | fulltext EuDML | MR | Zbl

[7] P. De Poi, On first order congruences of lines of $\mathbb{P}^4$ with a fundamental curve, Manuscripta Math. 106(1) (2001), 101-116. | DOI | MR | Zbl

[8] P. De Poi, Congruences of lines with one-dimensional focal locus, Port. Math. (N.S.) 61(3) (2004), 329-338. | fulltext EuDML | MR | Zbl

[9] P. De Poi, On first order congruences of lines of $\mathbb{P}^4$ with irreducible fundamental surface, Math. Nachr. 278(4) (2005), 363-378. | DOI | MR | Zbl

[10] P. De Poi and E. Mezzetti, On congruences of linear spaces of order one, Rend. Istit. Mat. Univ. Trieste 39 (2007), 177-206. | MR | Zbl

[11] P. De Poi, On first order congruences of lines of $\mathbb{P}^4$ with generically non-reduced fundamental surface, Asian J. Math., 12(1) (2008), 55-64. | DOI | MR | Zbl

[12] G. Farkas, Brill-Noether loci and the gonality stratification of $\mathcal{M}_g$, J. Reine Angew. Math. 539 (2001), 185-200. | DOI | MR | Zbl

[13] R. Hartshorne, Algebraic geometry, Grad. Texts in Math. 52, Springer-Verlag, New York-Heidelberg, 1977. | MR

[14] R. Hartshorne, Generalized divisors on Gorenstein curves and a theorem of Noether, J. Math. Kyoto Univ. 26(3) (1986), 375-386. | DOI | MR | Zbl

[15] R. Hartshorne, Cliffor index of ACM curves in $\mathbb{P}^3$, Milan J. Math. 70 (2002), 209- 221. | DOI | MR | Zbl

[16] R. Hartshorne and E. Schlesinger, Gonality of a general ACM curve in $\mathbb{P}^3$, Pacific J. Math. 251(2) (2011), 269-313. | DOI | MR | Zbl

[17] E. E. Kummer, Collected papers, Springer-Verlag, Berlin-New York, 1975. | MR

[18] A. F. Lopez and G. P. Pirola, On the curves through a general point of a smooth surface in $\mathbb{P}^3$, Math. Z. 219(1) (1995), 93-106. | fulltext EuDML | DOI | MR | Zbl

[19] G. Marletta, Sui complessi di rette del primo ordine dello spazio a quattro dimensioni, Rend. Circ. Mat. Palermo 28(1) (1909), 353-399. | Zbl

[20] G. Martens, The gonality of curves on a Hirzebruch surface. Arch. Math (Basel) 67(4) (1996), 349-352. | DOI | MR | Zbl

[21] D. Mumford, Rational equivalence of 0-cycles on surfaces, J. Math. Kyoto Univ. 9 (1969), 195-204. | DOI | MR | Zbl

[22] M. Noether, Zur Grundlegung der Theorie der algebraischen Raumcurven, Verl. d. Konig. Akad. d. Wiss., Berlin (1883).

[23] Z. Ran, Surfaces of order 1 in Grassmannians, J. Reine Angew. Math. 368 (1986), 119-126. | fulltext EuDML | DOI | MR | Zbl

[24] C. Segre, Preliminari di una teoria di varietà luoghi di spazi, Rend. Circ. Mat. Palermo 30(1) (1910), 87-121.

[25] C. Voisin, On a conjecture of Clemens on rational curves on hypersurfaces, J. Differential Geom. 44(1) (1996), 200-213. | MR | Zbl

[26] G. Xu, Subvarieties of general hypersurfaces in projective spaces, J. Differential Geom. 39(1) (1994), 139-172. | MR | Zbl