Some Inequalities of Hermite-Hadamard Typefor Convex Functions of Commuting Selfadjoint Operators
Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 3, pp. 491-511.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Some operator inequalities for convex functions of commuting selfadjoint operators that are related to the Hermite-Hadamard inequality are given. Natural examples for some fundamental convex functions are presented as well.
@article{BUMI_2013_9_6_3_a0,
     author = {Dragomir, Sever Silvestru},
     title = {Some {Inequalities} of {Hermite-Hadamard} {Typefor} {Convex} {Functions} of {Commuting} {Selfadjoint} {Operators}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {491--511},
     publisher = {mathdoc},
     volume = {Ser. 9, 6},
     number = {3},
     year = {2013},
     zbl = {0832.26015},
     mrnumber = {3202836},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_3_a0/}
}
TY  - JOUR
AU  - Dragomir, Sever Silvestru
TI  - Some Inequalities of Hermite-Hadamard Typefor Convex Functions of Commuting Selfadjoint Operators
JO  - Bollettino della Unione matematica italiana
PY  - 2013
SP  - 491
EP  - 511
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_3_a0/
LA  - en
ID  - BUMI_2013_9_6_3_a0
ER  - 
%0 Journal Article
%A Dragomir, Sever Silvestru
%T Some Inequalities of Hermite-Hadamard Typefor Convex Functions of Commuting Selfadjoint Operators
%J Bollettino della Unione matematica italiana
%D 2013
%P 491-511
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_3_a0/
%G en
%F BUMI_2013_9_6_3_a0
Dragomir, Sever Silvestru. Some Inequalities of Hermite-Hadamard Typefor Convex Functions of Commuting Selfadjoint Operators. Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 3, pp. 491-511. http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_3_a0/

[1] G. Allasia - C. Giordano - J. Pečarić, Hadamard-type inequalities for (2r)-convex functions with applications, Atti Acad. Sci. Torino-Cl. Sc. Fis., 133 (1999), 1-14. | MR

[2] A. G. Azpeitia, Convex functions and the Hadamard inequality, Rev.-Colombiana-Mat., 28 (1) (1994), 7-12. | fulltext EuDML | MR | Zbl

[3] E. F. Beckenbach - R. Bellman, Inequalities, 4th Edition, Springer-Verlag, Berlin, 1983. | MR

[4] S. S. Dragomir, An inequality improving the first Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products. J. Inequal. Pure Appl. Math. 3, no. 2 (2002), 8. | fulltext EuDML | MR | Zbl

[5] S. S. Dragomir, An inequality improving the second Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products. J. Inequal. Pure Appl. Math. 3, no. 3 (2002), 8. | fulltext EuDML | MR | Zbl

[6] S. S. Dragomir, Bounds for the normalized Jensen functional, Bull. Austral. Math. Soc. 74 (3) (2006), 471-476. | DOI | MR | Zbl

[7] S. S. Dragomir, Hermite-Hadamard's type inequalities for convex functions of selfadjoint operators in Hilbert spaces, Linear Algebra and its Applications, 436, Issue 5, Pages 1503-1515. | DOI | MR | Zbl

[8] S. S. Dragomir, Hermite-Hadamard's type inequalities for operator convex functions, Applied Mathematics and Computation, 218, Issue 3, Pages 766-772. | DOI | MR | Zbl

[9] S. S. Dragomir - P. Cerone - A. Sofo, Some remarks on the midpoint rule in numerical integration, Studia Univ. Babes - Bolyai Math. 45, no. 1 (2000), 63-74. Preprint RGMIA Res. Rep. Coll., 1, no. 2 (1998), 25-33. | MR | Zbl

[10] S. S. Dragomir - P. Cerone - A. Sofo, Some remarks on the trapezoid rule in numerical integration. Indian J. Pure Appl. Math. 31, no. 5 (2000), 475-494. Preprint RGMIA Res. Rep. Coll. , 2, no. 5 (1998), Art. 1. | MR | Zbl

[11] S. S. Dragomir - C. E. M. Pearce, Selected Topics on Hermite-Hadamard Type Inequalities and Applications, RGMIA Monographs, Victoria University, 2000. [http://www.staff.vu.edu.au/RGMIA/monographs/hermite\_hadamard.html].

[12] S. S. Dragomir, Some inequalities of Čebyšev type for functions of operators in Hilbert spaces, Preprint RGMIA Res. Rep. Coll., 15 (2012), Article 41, 12 pp. | DOI | MR

[13] A. M. Fink, Toward a theory of best possible inequalities, Nieuw Archief von Wiskunde, 12 (1994), 19-29. | MR | Zbl

[14] T. Furuta - J. Mićićhot - J. Pečarić - Y. Seo, Mond-Pečarić Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb, 2005. | MR | Zbl

[15] F. R. Gantmacher, The Theory of Matrices, Chelsea, 1959. | MR | Zbl

[16] B. Gavrea, On Hadamard's inequality for the convex mappings defined on a convex domain in the space, Journal of Ineq. in Pure 1, no. 1(2000), Article 9, http://jipam.vu.edu.au/. | MR | Zbl

[17] I. Gohberg - P. Lancaster - L. Rodman, Invariant Subspaces of Matrices with Application, Wiley-Interscience, 1986. | MR

[18] P. M. Gill - C. E. M. Pearce - J. Pečarić, Hadamard's inequality for r-convex functions, J. of Math. Anal. and Appl., 215 (1997), 461-470. | DOI | MR | Zbl

[19] K.-C. Lee - K.-L. Tseng, On a weighted generalisation of Hadamard's inequality for G-convex functions, Tamsui Oxford Journal of Math. Sci., 16 (1) (2000), 91-104. | MR

[20] A. Lupas, A generalisation of Hadamard's inequality for convex functions, Univ. Beograd. Publ. Elek. Fak. Ser. Mat. Fiz., 544-576, (1976), 115-121. | MR

[21] D. M. Maksimović, A short proof of generalized Hadamard's inequalities, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., no. 634-677 (1979), 126-128. | MR

[22] A. Matković - J. Pečarić - I. Perić, A variant of Jensen's inequality of Mercer's type for operators with applications. Linear Algebra Appl., 418, no. 2-3 (2006), 551- 564. | DOI | MR | Zbl

[23] C. A. Mccarthy, $c_p$; Israel J. Math., 5 (1967), 249-271. | DOI | MR

[24] J. Mićić - Y. Seo - S.-E. Takahasi - M. Tominaga, Inequalities of Furuta and Mond-Pečarić, Math. Ineq. Appl., 2 (1999), 83-111. | DOI | MR

[25] D. S. Mitrinović - I. Lacković, Hermite and convexity, Aequat. Math., 28 (1985), 229-232. | fulltext EuDML | DOI | MR

[26] D. S. Mitrinović - J. Pečarić - A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht, 1993. | DOI | MR | Zbl

[27] B. Mond - J. Pečarić, Convex inequalities in Hilbert space, Houston J. Math., 19 (1993), 405-420. | MR | Zbl

[28] B. Mond - J. Pečarić, On some operator inequalities, Indian J. Math., 35 (1993), 221-232. | MR

[29] B. Mond - J. Pečarić, Classical inequalities for matrix functions, Utilitas Math., 46 (1994), 155-166. | MR | Zbl

[30] F. Riesz - B. Sz-Nagy, Functional Analysis, New York, Dover Publications, 1990. | MR

[31] D. A. Suprunenko - R. I. Tyshkevich, Commutative Matrices, Academic, 1968. | MR