The Dynamics of Risk Beyond Convexity
Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 2, pp. 441-457.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We outline the history of Risk Measures from the original formulation given by Artzner Delbaen Eber and Heath until the more recent research on quasiconvex Risk Measures. We therefore present some novel results on quasiconvex Risk Measures in the conditional setting, focusing on two different approaches: the vector space compared to the module approach. In particular the second one will guarantee a complete duality theory which is a key ingredient in the representation of risk preferences.
@article{BUMI_2013_9_6_2_a9,
     author = {Maggis, Marco},
     title = {The {Dynamics} of {Risk} {Beyond} {Convexity}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {441--457},
     publisher = {mathdoc},
     volume = {Ser. 9, 6},
     number = {2},
     year = {2013},
     zbl = {1282.91159},
     mrnumber = {3112988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_2_a9/}
}
TY  - JOUR
AU  - Maggis, Marco
TI  - The Dynamics of Risk Beyond Convexity
JO  - Bollettino della Unione matematica italiana
PY  - 2013
SP  - 441
EP  - 457
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_2_a9/
LA  - en
ID  - BUMI_2013_9_6_2_a9
ER  - 
%0 Journal Article
%A Maggis, Marco
%T The Dynamics of Risk Beyond Convexity
%J Bollettino della Unione matematica italiana
%D 2013
%P 441-457
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_2_a9/
%G en
%F BUMI_2013_9_6_2_a9
Maggis, Marco. The Dynamics of Risk Beyond Convexity. Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 2, pp. 441-457. http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_2_a9/

[1] C. D. Aliprantis - K. C. Border, Infinite dimensional analysis, Springer, Berlin, third edition, 2006. A hitchhiker's guide. | MR | Zbl

[2] P. Artzner - F. Delbaen - J.-M. Eber - D. Heath, Coherent measures of risk, Math. Finance, 9, n. 3 (1999), 203-228. | DOI | MR | Zbl

[3] D. Bernoulli, Exposition of a new theory on the measurement of risk, Econometrica, 22 (1954), 23-36. | DOI | MR | Zbl

[4] S. Cerreia-Vioglio - F. Maccheroni - M. Marinacci - L. Montrucchio, Complete monotone quasiconcave duality, Math. Op. Res. 36 (2) (2011), 321-339. | DOI | MR | Zbl

[5] S. Cerreia-Vioglio - F. Maccheroni - M. Marinacci - L. Montrucchio, Risk measures: rationality and diversification, Math. Finance, 21 (4) (2011), 743-774. | DOI | MR | Zbl

[6] K. Detlefsen - G. Scandolo, Conditional and dynamic convex risk measures, Finance Stoch., 9 (4) (2005), 539-561. | DOI | MR | Zbl

[7] N. El Karoui - C. Ravanelli, Cash sub-additive risk measures and interest rate ambiguity, Math. Finance, 19(4) (2009), 561-590. | DOI | MR | Zbl

[8] D. Filipovič - M. Kupper - N. Vogelpoth, Separation and duality in locally $L^0$-convex modules, J. Funct. Anal. 256 (12) (2009), 3996-4029. | DOI | MR | Zbl

[9] H. Föllmer - A. Schied, Convex measures of risk and trading constraints, Finance Stoch. 6 (4) (2002), 429-447. | DOI | MR | Zbl

[10] M. Frittelli - M. Maggis, Conditional Certainty Equivalent, Int. J. Theor. Appl. Finance, 14(1) (2011), 41-59. | DOI | MR | Zbl

[11] M. Frittelli - M. Maggis, Dual representation of quasi-convex conditional maps., SIAM J. Financial Math., 2 (2011), 357-382. | DOI | MR | Zbl

[12] M. Frittelli - M. Maggis, Complete duality for quasiconvex dynamic risk measures on modules of the $L^p$-type (2012). Preprint. | DOI | MR | Zbl

[13] M. Frittelli - M. Maggis, Conditionally evenly convex sets and evenly quasi-convex maps (2012). Preprint. | DOI | MR | Zbl

[14] M. Frittelli - E. Rosazza Gianin, Putting order in risk measures, J. Bank Fin. 26 (7) (2002), 1473-1486.

[15] T. Guo, Relations between some basic results derived from two kinds of topologies for a random locally convex module, J. Funct. Anal. 258 (2010), 3024-3047. | DOI | MR | Zbl

[16] M. Maggis, On quasiconvex conditional maps, volume 4. Ledizioni, Math. Sciences Series, 2010. Duality results and applications to finance.

[17] H. Markovitz, Portfolio selection, J. Finance, 7 (1) (1952), 77-91.

[18] W. F. Sharpe, Capital asset prices: a theory of market equilibrium under conditions of risk, J. Finance, 19 (3) (1964), 425-442.

[19] M. Volle, Duality for the level sum of quasiconvex functions and applications, Control, ESAIM Control Optim. Calc. Var. 3 (1998), 329-343. | fulltext EuDML | DOI | MR | Zbl

[20] J. Von Neumann - O. Morgenstern, Theory of games and economic behavior, Princeton University Press, Princeton, NJ, 2004. Reprint of the 1980 edition. | MR | Zbl