A Deconvolution Algorithm for Imaging Problems from Fourier Data
Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 2, pp. 389-404.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this paper we address the problem of reconstructing a two-dimensional image starting from the knowledge on nonuniform samples of its Fourier Transform. Such inverse problem has a natural semidiscrete formulation, that is analyzed together with its fully discrete counterpart. In particular, the image restoration problem in this case can be reformulated as the minimization of the data discrepancy under nonnegativity constraints, possibly with the addition of a further equality constraint on the total flux of the image. Moreover, we show that such problem is equivalent to a deconvolution in the image space, that represents a key property allowing the desing of a computationally efficient algorithm based on Fast Fourier Transforms to address its solution. Our proposal to compute a regularized solution in the discrete case involves a gradient projection method, with an adaptive choice for the steplength parameter that improves the convergence rate. A numerical experimentation on simulated data from the NASA RHESSI mission is also performed.
@article{BUMI_2013_9_6_2_a7,
     author = {Prato, Marco},
     title = {A {Deconvolution} {Algorithm} for {Imaging} {Problems} from {Fourier} {Data}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {389--404},
     publisher = {mathdoc},
     volume = {Ser. 9, 6},
     number = {2},
     year = {2013},
     zbl = {1291.94013},
     mrnumber = {3112986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_2_a7/}
}
TY  - JOUR
AU  - Prato, Marco
TI  - A Deconvolution Algorithm for Imaging Problems from Fourier Data
JO  - Bollettino della Unione matematica italiana
PY  - 2013
SP  - 389
EP  - 404
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_2_a7/
LA  - en
ID  - BUMI_2013_9_6_2_a7
ER  - 
%0 Journal Article
%A Prato, Marco
%T A Deconvolution Algorithm for Imaging Problems from Fourier Data
%J Bollettino della Unione matematica italiana
%D 2013
%P 389-404
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_2_a7/
%G en
%F BUMI_2013_9_6_2_a7
Prato, Marco. A Deconvolution Algorithm for Imaging Problems from Fourier Data. Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 2, pp. 389-404. http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_2_a7/

[1] J. Barzilai - J. M. Borwein, Two point step size gradient methods, IMA J. Numer. Anal., 8 (1988), 141-148. | DOI | MR | Zbl

[2] F. Benvenuto - R. Zanella - L. Zanni - M. Bertero, Nonnegative least-squares image deblurring: improved gradient projection approaches, Inverse Probl., 26 (2010), 025004. | DOI | MR | Zbl

[3] M. Bertero - P. Boccacci, Introduction to inverse problems in imaging, Institute of Physics Publishing-Bristol, 1998. | DOI | MR | Zbl

[4] M. Bertero - C. De Mol - E. R. Pike, Linear inverse problems with discrete data: I - General formulation and singular system analysis, Inverse Probl., 1 (1985), 300-330. | DOI | MR | Zbl

[5] D. Bertsekas, Nonlinear programming, Athena Scientific-Belmont, 1999. | MR

[6] E. G. Birgin - J. M. Martinez - M. Raydan, Inexact spectral projected gradient methods on convex sets, IMA J. Numer. Anal., 23 (2003), 539-559. | DOI | MR | Zbl

[7] R. E. Blahut, Theory of remote image formation, Cambridge University Press - Cambridge, 2001. | DOI | MR | Zbl

[8] S. Bonettini, Inexact block coordinate descent methods with application to the nonnegative matrix factorization, IMA J. Numer. Anal., 37 (2011), 1431-1452. | DOI | MR | Zbl

[9] S. Bonettini - M. Prato, Nonnegative image reconstruction from sparse Fourier data: a new deconvolution algorithm, Inverse Probl., 26 (2010), 095001. | DOI | MR | Zbl

[10] S. Bonettini - M. Prato, A novel gradient projection approach for Fourier-based image restoration, AIP Conf. Proc., 1281 (2010), 527-530.

[11] S. Bonettini - R. Zanella - L. Zanni, A scaled gradient projection method for constrained image deblurring, Inverse Probl., 25 (2009), 015002. | DOI | MR | Zbl

[12] S. C. Bong - J. Lee - D. E. Gary - H. S. Yun, Spatio-spectral maximum entropy method. I. Formulation and test, Astrophys. J., 636 (2006), 1159-1165.

[13] R. N. Bracewell, The Fourier transform and its applications, McGraw-Hill-New York, 2000. | MR | Zbl

[14] J.-M. Conan - L. M. Mugnier - T. Fusco - V. Michau - G. Rousset, Myopic deconvolution of adaptive optics images by use of object and point-spread function power spectra, Appl. Opt., 37 (1998), 4614-4622.

[15] J. C. Christou - D. Bonnacini - N. Ageorges - F. Marchis, Myopic deconvolution of adaptive optics images, Messenger, 97 (1999), 14-22.

[16] B. R. Dennis - R. L. Pernak, Hard X-ray flare source sizes measured with the Ramaty High Energy Solar Spectroscopic Imager, Astrophys. J., 698 (2009), 2131-2143.

[17] A. Dutt - V. Rokhlin, Fast Fourier Transforms for nonequispaced data, SIAM J. Sci. Comput., 14 (1993), 1368-1393. | DOI | MR | Zbl

[18] B. Eicke, Iteration methods for convexly constrained ill-posed problems in Hilbert space, Numer. Func. Anal. Opt., 13 (1992), 413-429. | DOI | MR | Zbl

[19] H. W. Engl - M. Hanke - A. Neubauer, Regularization of inverse problems, Kluwer-Dordrecht, 1996. | MR | Zbl

[20] G. Frassoldati - G. Zanghirati - L. Zanni, New adaptive stepsize selections in gradient methods, J. Ind. Manage. Optim., 4 (2008), 299-312. | DOI | MR | Zbl

[21] S. F. Gull - G. J. Daniell, Image reconstruction from incomplete and noisy data, Nature, 272 (1978), 686-690.

[22] J. Hadamard, Lectures on Cauchy's problem in linear partial differential equations, Yale University Press-New Haven, 1923. | MR | Zbl

[23] G. J. Hurford - E. J. Schmahl - R. A. Schwartz - A. J. Conway - M. J. Aschwanden - A. Csillaghy - B. R. Dennis - C. Johns-Krull - S. Krucker - R. P. Lin - {author_10} - {author_11} - {author_12} - {author_13}, The RHESSI imaging concept, Solar Phys., 210 (2002), 61-86.

[24] S. Krucker - M. Battaglia - P. J. Cargill - L. Fletcher - H. S. Hudson - A. L. Mackinnon - S. Masuda - L. Sui - M. Tomczak - A. L. Veronig - {author_10} - {author_11}, Hard X-ray emission from the solar corona, Astron. Astrophys. Rev., 16 (2008), 155-208.

[25] R. P. Lin - B. R. Dennis - G. J. Hurford - D. M. Smith - A. Zehnder - P. R. Harvey - D. W. Curtis - D. Pankow - P. Turin - M. Bester - {author_10} - {author_11} - {author_12} - {author_13} - {author_14} - {author_15} - {author_16} - {author_17} - {author_18} - {author_19} - {author_20} - {author_21} - {author_22} - {author_23} - {author_24} - {author_25} - {author_26} - {author_27} - {author_28} - {author_29} - {author_30} - {author_31} - {author_32} - {author_33} - {author_34} - {author_35} - {author_36} - {author_37} - {author_38} - {author_39} - {author_40} - {author_41} - {author_42} - {author_43} - {author_44} - {author_45} - {author_46} - {author_47} - {author_48} - {author_49} - {author_50} - {author_51} - {author_52} - {author_53} - {author_54} - {author_55} - {author_56} - {author_57} - {author_58} - {author_59} - {author_60} - {author_61} - {author_62} - {author_63} - {author_64} - {author_65}, The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI), Solar Phys., 210 (2002), 3-32.

[26] A. M. Massone - A. G. Emslie - G. J. Hurford - M. Prato - E. P. Kontar - M. Piana, Hard X-ray imaging of solar flares using interpolated visibilities, Astrophys. J., 703 (2009), 2004-2016. | Zbl

[27] M. Prato, Regularization methods for the solution of inverse problems in solar X-ray and imaging spectroscopy, Arch. Comput. Methods Eng., 16 (2009), 109-160. | DOI | MR | Zbl

[28] M. Prato - R. Cavicchioli - L. Zanni - P. Boccacci - M. Bertero, Efficient deconvolution methods for astronomical imaging: algorithms and IDL-GPU codes, Astron. Astrophys., 539 (2012), A133.

[29] M. Prato - M. Piana - A. G. Emslie - G. H. Hurford - E. P. Kontar - A. M. Massone, A regularized visibility-based approach to astronomical imaging spectroscopy, SIAM J. Imag. Sci., 2 (2009), 910-930. | DOI | MR | Zbl

[30] T. Serafini - G. Zanghirati - L. Zanni, Gradient projection methods for quadratic programs and applications in training support vector machines, Optim. Methods Softw., 20 (2005), 353-378. | DOI | MR | Zbl

[31] A. N. Tikhonov - A. V. Goncharsky - V. V. Stepanov - A. G. Yagola, Numerical methods for the solution of ill-posed problems, Kluwer-Dordrecht, 1995. | DOI | MR | Zbl

[32] R. Zanella - P. Boccacci - L. Zanni - M. Bertero, Efficient gradient projection methods for edge-preserving removal of Poisson noise, Inverse Probl., 25 (2009), 045010. | DOI | MR | Zbl

[33] B. Zhou - L. Gao - Y. H. Dai, Gradient methods with adaptive step-sizes, Comput. Optim. Appl., 35 (2006), 69-86. | DOI | MR | Zbl