Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2013_9_6_2_a3, author = {Donatelli, Marco and Serra Capizzano, Stefano}, title = {Multigrid {Methods} for {(Multilevel)} {Structured} {Matrices} {Associated} with a {Symbol} and {Related} {Application}}, journal = {Bollettino della Unione matematica italiana}, pages = {319--347}, publisher = {mathdoc}, volume = {Ser. 9, 6}, number = {2}, year = {2013}, zbl = {1280.65033}, mrnumber = {3112982}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_2_a3/} }
TY - JOUR AU - Donatelli, Marco AU - Serra Capizzano, Stefano TI - Multigrid Methods for (Multilevel) Structured Matrices Associated with a Symbol and Related Application JO - Bollettino della Unione matematica italiana PY - 2013 SP - 319 EP - 347 VL - 6 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_2_a3/ LA - en ID - BUMI_2013_9_6_2_a3 ER -
%0 Journal Article %A Donatelli, Marco %A Serra Capizzano, Stefano %T Multigrid Methods for (Multilevel) Structured Matrices Associated with a Symbol and Related Application %J Bollettino della Unione matematica italiana %D 2013 %P 319-347 %V 6 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_2_a3/ %G en %F BUMI_2013_9_6_2_a3
Donatelli, Marco; Serra Capizzano, Stefano. Multigrid Methods for (Multilevel) Structured Matrices Associated with a Symbol and Related Application. Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 2, pp. 319-347. http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_2_a3/
[1] A V-cycle Multigrid for multilevel matrix algebras: proof of optimality, Numer. Math., 105, 4 (2007), 511-547. | DOI | MR | Zbl
- ,[2] V-cycle optimal convergence for certain (multilevel) structured linear system, SIAM J. Matrix Anal. Appl., 26, 1 (2004), 186-214. | DOI | MR | Zbl
- - ,[3] The algebraic multilevel iteration methods - theory and applications, Proceedings of the 2nd. Int Coll. on Numerical Analysis, D. Bainov Ed., VSP 1994, Bulgaria, August 1993. | MR | Zbl
- ,[4] On the asymptotic spectrum of Finite Elements matrices, SIAM J. Numer. Anal., 45, 2 (2007), 746-769. | DOI | MR | Zbl
- ,[5] Spectral and computational properties of band simmetric Toeplitz matrices, Linear Algebra Appl., 52/53 (1983), 99-125. | DOI | MR | Zbl
- ,[6] On a matrix algebra related to the discrete Hartley transform, SIAM J. Matrix Anal. Appl., 14, 2 (1993), 500-507. | DOI | MR | Zbl
- ,[7] Multigrid methods, volume 294 of Pitman Research Notes in Mathematics Series. Longman Scientific & Technical, Harlow, 1993. | MR | Zbl
,[8] Multigrid for differential-convolution problems arising in image processing, Proc. Workshop on Scientific Computing, G. Golub, S.H. Lui, F. Luk, R. Plemmons Eds, Springer (1999), 58-72. | MR | Zbl
- - ,[9] Multigrid method for ill-conditioned symmetric Toeplitz systems, SIAM J. Sci. Comp., 19, 2 (1998), 516-529. | DOI | MR | Zbl
- - ,[10] Conjugate gradient methods for Toeplitz systems, SIAM Rev., 38 (1996), 427-482. | DOI | MR | Zbl
- ,[11] Application of multigrid techniques to image restoration problems,, in Proc. SPIE, 46th Annual Meeting, F. Luk Ed, SPIE, 4791 (2002), 210-221.
- - - ,[12] Two-Grid methods for banded linear systems from DCT III algebra, Numer. Linear Algebra Appl., 12, 2/3 (2005), 241-249. | DOI | MR | Zbl
- - ,[13] Convergence of the multigrid method for ill-conditioned block toeplitz systems, BIT, 41, 1 (2001), 179-190. | DOI | MR | Zbl
- - ,[14] The solution of ill-conditioned symmetric Toeplitz systems via two-grid and wavelet methods, Comput. Math. Appl., 46 (2003), 793-804. | DOI | MR | Zbl
- - ,[15] A Multigrid method for restoration and regularization of images with Dirichlet boundary conditions, in Proc. SPIE, 48th Annual Meeting, F. Luk Ed, SPIE, 5205 (2004), 380-389.
,[16] A Multigrid method for image restoration with Tikhonov regularization., Numer. Linear Algebra Appl., 12 (2005), 715-729. | DOI | MR | Zbl
,[17] An algebraic generalization of local Fourier analysis for grid transfer operators in multigrid based on Toeplitz matrices, Numer. Linear Algebra Appl., 17 (2010), 179-197. | DOI | MR | Zbl
,[18] An iterative multigrid regularization method for Toeplitz discrete ill-posed problems, Numer. Math. Theor. Meth. Appl., 5 (2012), 43-61. | MR | Zbl
,[19] On the regularizing power of multigrid-type algorithms, SIAM J. Sci. Comput., 27, 6 (2006), 2053-2076. | DOI | MR | Zbl
- ,[20] Filter factor analysis of an iterative multilevel regularizing method, Electron. Trans. Numer. Anal., 29 (2007/2008), 163-177. | fulltext EuDML | MR | Zbl
- ,[21] Multigrid methods for Toeplitz linear systems with different size reduction, BIT, 52, 2 (2012), 305-327. | DOI | MR | Zbl
- - ,[22] Multilevel Approach For Signal Restoration Problems With Toeplitz Matrices, SIAM J. Sci. Comput., 32, 1 (2010), 299-319. | DOI | MR | Zbl
- ,[23] Multigrid methods for Toeplitz matrices, Calcolo, 28 (1991), 283-305. | DOI | MR | Zbl
- ,[24] Multigrid methods for symmetric positive definite block Toeplitz matrices with nonnegative generating functions, SIAM J. Sci. Comp., 17, 4 (1996), 1068-1081. | DOI | MR | Zbl
- ,[25] Multigrid methods for anisotropic BTTB systems, Linear Algebra Appl. 417 (2006), 314-334. | DOI | MR | Zbl
,[26] Deblurring Images: Matrices, Spectra, and Filtering, SIAM, Philadelphia, PA, 2006. | DOI | MR
- - ,[27] On the order of prolongations and restrictions in multigrid procedures, J. Comput. Appl. Math., 32 (1990), 423-429. | DOI | MR | Zbl
,[28] Regularization of inverse problems, Mathematics and its Applications, Kluwer Academic Publishers, 1996. | MR | Zbl
- - ,[29] Compact Fourier analysis for designing multigrid methods, SIAM J. Sci. Comput. 31 (2008), 644-666. | DOI | MR | Zbl
,[30] Multigrid preconditioning and Toeplitz matrices, Electr. Trans. Numer. Anal., 13 (2002), 81-105. | fulltext EuDML | MR | Zbl
- ,[31] Multigrid methods for block Toeplitz matrices with small size blocks, BIT, 46 (2006), 61-83, | DOI | MR | Zbl
- ,[32] Fast algorithms for block Toeplitz matrices with Toeplitz entries, Signal Process., 6 (1984), 77-81. | MR
- -[33] Cascadic multiresolution methods for image deblurring, SIAM J. Imaging Sci., 1 (2008), 51-74. | DOI | MR | Zbl
- - - ,[34] Algebraic Multigrid, in Frontiers in Applied Mathemathics: Multigrid Methods, S. McCormick Ed. SIAM, Philadelphia (PA) (1987), 73-130. | DOI | MR
- ,[35] Preconditioning strategies for asymptotically ill-conditioned block Toeplitz systems, BIT, 34, 4 (1994), 579-594. | DOI | MR | Zbl
,[36] Convergence analysis of two-grid methods for elliptic Toeplitz and PDEs Matrix-sequences, Numer. Math., 92, 3 (2002), 433-465. | DOI | MR | Zbl
,[37] Generalized Locally Toeplitz sequences: spectral analysis and applications to discretized Partial Differential Equations, Linear Algebra Appl., 366, 1 (2003), 371-402. | DOI | MR | Zbl
,[38] A note on anti-reflective boundary conditions and fast deblurring models, SIAM J. Sci. Comput., 25, 4 (2004), 1307-1325. | DOI | MR | Zbl
,[39] The GLT class as a Generalized Fourier Analysis and applications, Linear Algebra Appl., 419, 1 (2006), 180-233. | DOI | MR | Zbl
,[40] Multigrid Methods for Multilevel Circulant Matrices, SIAM J. Sci. Comp., 26, 1 (2005), 55-85. | DOI | MR | Zbl
- ,[41] Any circulant-like preconditioner for multilevel matrices is not superlinear, SIAM J. Matrix Anal. Appl., 21, 2 (1999), 431-439. | DOI | MR | Zbl
- ,[42] V-cycle optimal convergence for DCT-III matrices, Numerical methods for structured matrices and applications, Oper. Theory Adv. Appl., 199 (2010), 377-396. | DOI | MR | Zbl
,[43] Locally Toeplitz matrices: spectral theory and applications, Linear Algebra Appl., 278 (1998), 91-120. | DOI | MR | Zbl
,[44] Multigrid, Academic Press, 2001. | MR
- - ,[45] Circulant precondictioners with unbounded inverse, Linear Algebra Appl., 216 (1995), 1-23. | DOI | MR | Zbl
,[46] A unifying approach to some old and new theorems on pre-condictioning and clustering, Linear Algebra Appl., 232 (1996), 1-43. | DOI | MR | Zbl
,[47] Matrix Iterative Analysis, Prentice Hall, Englewood Cliffs, 1962. | MR | Zbl
,[48] Computational Methods for Inverse Problems, SIAM, Philadelphia, PA, 2002. | DOI | MR | Zbl
,[49] Iterative methods by space decomposition and subspace correction, SIAM Rev., 34, 4 (1992), 581-613. | DOI | MR | Zbl
,[50] Coarse-grid correction for nonelliptic and singular perturbation problems, SIAM J. Sci. Comp., 19, 5 (1998), 1682-1699. | DOI | MR | Zbl
,