Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2013_9_6_2_a11, author = {Poloni, Federico}, title = {An {Algorithm} for {Solving} {Systems} of {Quadratic} {Equations} in {Branching} {Processes}}, journal = {Bollettino della Unione matematica italiana}, pages = {481--486}, publisher = {mathdoc}, volume = {Ser. 9, 6}, number = {2}, year = {2013}, zbl = {1296.60235}, mrnumber = {3112990}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_2_a11/} }
TY - JOUR AU - Poloni, Federico TI - An Algorithm for Solving Systems of Quadratic Equations in Branching Processes JO - Bollettino della Unione matematica italiana PY - 2013 SP - 481 EP - 486 VL - 6 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_2_a11/ LA - en ID - BUMI_2013_9_6_2_a11 ER -
Poloni, Federico. An Algorithm for Solving Systems of Quadratic Equations in Branching Processes. Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 2, pp. 481-486. http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_2_a11/
[1] Markovian trees: properties and algorithms, Ann. Oper. Res., 160 (2008), 31-50. | DOI | MR | Zbl
- - ,[2] On the solution of a quadratic vector equation arising in Markovian binary trees, Numer. Linear Algebra Appl., 18, n. 6 (2011), 981-991. | DOI | MR | Zbl
- - ,[3] Algorithmic Approach to the Extinction Probability of Branching Processes, Methodology and Computing in Applied Probability (2010). | DOI | MR
- - ,[4] Newton's iteration for the extinction probability of a Markovian binary tree, Linear Algebra Appl., 428 (11- 12) (2008), 2791-2804. | DOI | MR
- - ,[5] Modeling of P2P file sharing with a level-dependent QBD process, Advances in queueing theory and network applications, (Springer, New York, 2009), 247-263. | DOI | MR
- - ,[6] On the link between Markovian trees and tree-structured Markov chains, European Journal of Operational Research, 201, n. 3 (2010), 791-798. | DOI | MR | Zbl
- ,[7] A Perron iteration for the solution of a quadratic vector equation arising in Markovian binary trees, SIAM J. Matrix Anal. Appl., 32, n. 1 (2011), 248-261. | DOI | MR | Zbl
- ,[8] Algorithms for quadratic matrix and vector equations, Vol. 16, Tesi. Scuola Normale Superiore di Pisa (Nuova Serie) [Theses of Scuola Normale Superiore di Pisa (New Series)], Dissertation, Scuola Normale Superiore, Pisa, 2011, pp. xvi+239. | DOI | MR
,[9] Quadratic vector equations, Linear Algebra and its Applications, Vol. 438, n. 4 (2013), 1627-1644 (https://www.sciencedirect.com/science/article/pii/S0024379511004484?np=y). | Zbl
,