Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2013_9_6_1_a7, author = {Bertolini, Massimo}, title = {Regulators, {L-Functions} and {Rational} {Points}}, journal = {Bollettino della Unione matematica italiana}, pages = {191--204}, publisher = {mathdoc}, volume = {Ser. 9, 6}, number = {1}, year = {2013}, zbl = {1282.14042}, mrnumber = {3076847}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_1_a7/} }
Bertolini, Massimo. Regulators, L-Functions and Rational Points. Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 1, pp. 191-204. http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_1_a7/
[Bei] Higher regulators of modular curves, Applications of algebraic K-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983), 1-34, Contemp. Math., 55, Amer. Math. Soc., Providence, RI, 1986. | DOI | MR
[BCDT] On the modularity of elliptic curves over $\mathbb{Q}$: wild 3-adic exercises, J. Amer. Math. Soc., 14, no. 4 (2001), 843-939. | DOI | MR | Zbl
- - - ,[BD1] Kato's Euler system and rational points on elliptic curves I: A p-adic Beilinson formula, Israel Journal of Math., to appear. | DOI | MR | Zbl
- ,[BD2] Kato's Euler system and rational points on elliptic curves II: The explicit reciprocity law, in preparation. | Zbl
- ,[BD3] Kato's Euler system and rational points on elliptic curves III: The conjecture of Perrin-Riou, in preparation.
- ,[BDP1] Generalised Heegner cycles and p-adic Rankin L-series, Duke Math. J., to appear. | DOI | MR
- - ,[Ber] Report on the Birch and Swinnerton-Dyer conjecture, Milan J. Math., 78, no. 1 (2010), 153-178. | DOI | MR
,[Bes1] Syntomic regulators and p-adic integration. I. Rigid syntomic regulators, Proceedings of the Conference on p-adic Aspects of the Theory of Automorphic Representations (Jerusalem, 1998) Israel J. Math., 120, part B (2000), 291-334. | DOI | MR | Zbl
,[Bes2] Syntomic regulators and p-adic integration. II. $K_2$ of curves, Proceedings of the Conference on p-adic Aspects of the Theory of Automorphic Representations (Jerusalem, 1998). Israel J. Math., 120, part B (2000), 335-359. | DOI | MR | Zbl
,[Bl] Higher regulators, algebraic K-theory, and zeta functions of elliptic curves, CRM Monograph Series, 11. American Mathematical Society, Providence, RI, 2000. x+97 pp. | MR
,[Br] Régulateurs p-adiques explicites pour le $K_2$ des courbes elliptiques, Actes de la Conférence ``Fonctions L et Arithmétique'', 29-57, Publ. Math. Besançon Algèbre Théorie Nr., Lab. Math. Besançon, Besançon, 2010. | MR
,[Co] Dilogarithms, regulators and p-adic L-functions, Invent. Math., 69, no. 2 (1982), 171-208. | fulltext EuDML | DOI | MR | Zbl
,[Co-dS] p-adic regulators on curves and special values of p-adic L-functions, Inventiones Math., 93 (1988), 239-266. | fulltext EuDML | DOI | MR | Zbl
- ,[Colz] La conjecture de Birch et Swinnerton-Dyer p-adique, (French) Astérisque No. 294 (2004), ix, 251-319. | MR
,[De] Valeurs de fonctions L et périodes d'intégrales, With an appendix by N. Koblitz and A. Ogus. Proc. Sympos. Pure Math., XXXIII, Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, pp. 313-346, Amer. Math. Soc., Providence, R.I., 1979. | MR
,[DR] Diagonal cycles and Euler systems I: A p-adic Gross- Zagier formula, submitted. | DOI | MR | Zbl
- ,[Ge] On the Tamagawa number conjecture for motives attached to modular forms, PhD Thesis, California Institute of Technology, 2006. | MR
,[GZ] Heegner points and derivatives of L-series, Invent. Math., 84, no. 2 (1986), 225-320. | fulltext EuDML | DOI | MR | Zbl
- ,[Ka] p-adic Hodge theory and values of zeta functions of modular forms. Cohomologies p-adiques et applications arithmétiques. III, Astérisque No. 295 (2004), ix, 117-290. | MR
,[Ki] Classical motives and motivic L-functions, Autour des motifs-École d'été Franco-Asiatique de Géométrie Algébrique et de Théorie des Nombres/Asian-French Summer School on Algebraic Geometry and Number Theory. Volume I, 1-25, Panor. Synthèses, 29, Soc. Math. France, Paris, 2009. | MR
,[Kit] On standard p-adic L-functions of families of elliptic cusp forms, in p-adic monodromy and the Birch and Swinnerton-Dyer conjecture (Boston, MA, 1991), 81-110, Contemp. Math., 165, Amer. Math. Soc., Providence, RI, 1994. | DOI | MR
,[Ko] Euler systems, The Grothendieck Festschrift, Vol. II, 435-483, Progr. Math., 87, Birkhäuser Boston, Boston, MA, 1990. | MR
,[La] Cyclotomic fields I and II. Combined second edition. With an appendix by Karl Rubin. Graduate Texts in Mathematics, 121. Springer-Verlag, New York, 1990, xviii+433. | DOI | MR | Zbl
,[Man] Parabolic points and zeta functions of modular curves, Izv. Akad. Nauk SSSR Ser. Mat., 36 (1972), 19-66. | MR | Zbl
,[MSD] Arithmetic of Weil curves, Invent. Math., 25 (1974), 1-61. | fulltext EuDML | DOI | MR | Zbl
- ,[MTT] On p-adic analogues of the conjectures of Birch and Swinnerton-Dyer, Invent. Math., 84, no. 1 (1986), 1-48. | fulltext EuDML | DOI | MR | Zbl
- - ,[PR1] Points de Heegner et dérivées de fonctions L p-adiques, Invent. Math., 89, no. 3 (1987), 455-510. | fulltext EuDML | DOI | MR | Zbl
,[PR2] Fonctions L p-adiques d'une courbe elliptique et points rationnels, Ann. Inst. Fourier (Grenoble), 43, no. 4 (1993), 945-995. | fulltext EuDML | MR | Zbl
,[Ru] The main conjecture, Appendix to [La].
,[Sil]The arithmetic of elliptic curves. Second edition. Graduate Texts in Mathematics, 106. Springer, Dordrecht, 2009. xx+513 pp. | DOI | MR | Zbl
,[So] Éléments cyclotomiques en K-théorie, Journées arithmétiques de Besançon, Astérisque No. 147-148 (1987), 225-257. | MR
,[SU] The Iwasawa Main Conjecture for $GL_2$, preprint. | DOI | MR
- ,[TW] Ring-theoretic properties of certain Hecke algebras, Ann. of Math. (2), 141, no. 3 (1995), 553-572. | DOI | MR | Zbl
- ,[Wa1] Introduction to cyclotomic fields. Second edition. Graduate Texts in Mathematics, 83. Springer-Verlag, New York, 1997. xiv+487 pp. | DOI | MR | Zbl
,[Wa2] Euler factors for p-adic L-functions, Mathematika, 25, no. 1 (1978), 68-75. | DOI | MR
,[Wi1] Modular elliptic curves and Fermat's last theorem, Ann. of Math. (2), 141, no. 3 (1995), 443-551. | DOI | MR | Zbl
,[Wi2] The Birch and Swinnerton-Dyer conjecture, on the Clay Mathematics Institute web site: http://www.claymath.org/millennium/ | Zbl
,