Regulators, L-Functions and Rational Points
Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 1, pp. 191-204.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

This article is a revised version of the text of the plenary conference I gave at the XIX Congress of ``Unione Matematica Italiana'', held in Bologna in September 2011. It discusses the arithmetic significance of the values at integers of the complex and p-adic L-functions associated to Dirichlet characters and to elliptic curves.
@article{BUMI_2013_9_6_1_a7,
     author = {Bertolini, Massimo},
     title = {Regulators, {L-Functions} and {Rational} {Points}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {191--204},
     publisher = {mathdoc},
     volume = {Ser. 9, 6},
     number = {1},
     year = {2013},
     zbl = {1282.14042},
     mrnumber = {3076847},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_1_a7/}
}
TY  - JOUR
AU  - Bertolini, Massimo
TI  - Regulators, L-Functions and Rational Points
JO  - Bollettino della Unione matematica italiana
PY  - 2013
SP  - 191
EP  - 204
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_1_a7/
LA  - en
ID  - BUMI_2013_9_6_1_a7
ER  - 
%0 Journal Article
%A Bertolini, Massimo
%T Regulators, L-Functions and Rational Points
%J Bollettino della Unione matematica italiana
%D 2013
%P 191-204
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_1_a7/
%G en
%F BUMI_2013_9_6_1_a7
Bertolini, Massimo. Regulators, L-Functions and Rational Points. Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 1, pp. 191-204. http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_1_a7/

[Bei] A. A. Beilinson Higher regulators of modular curves, Applications of algebraic K-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983), 1-34, Contemp. Math., 55, Amer. Math. Soc., Providence, RI, 1986. | DOI | MR

[BCDT] C. Breuil - B. Conrad - F. Diamond - R. Taylor, On the modularity of elliptic curves over $\mathbb{Q}$: wild 3-adic exercises, J. Amer. Math. Soc., 14, no. 4 (2001), 843-939. | DOI | MR | Zbl

[BD1] M. Bertolini - H. Darmon, Kato's Euler system and rational points on elliptic curves I: A p-adic Beilinson formula, Israel Journal of Math., to appear. | DOI | MR | Zbl

[BD2] M. Bertolini - H. Darmon, Kato's Euler system and rational points on elliptic curves II: The explicit reciprocity law, in preparation. | Zbl

[BD3] M. Bertolini - H. Darmon, Kato's Euler system and rational points on elliptic curves III: The conjecture of Perrin-Riou, in preparation.

[BDP1] M. Bertolini - H. Darmon - K. Prasanna, Generalised Heegner cycles and p-adic Rankin L-series, Duke Math. J., to appear. | DOI | MR

[Ber] M. Bertolini, Report on the Birch and Swinnerton-Dyer conjecture, Milan J. Math., 78, no. 1 (2010), 153-178. | DOI | MR

[Bes1] A. Besser, Syntomic regulators and p-adic integration. I. Rigid syntomic regulators, Proceedings of the Conference on p-adic Aspects of the Theory of Automorphic Representations (Jerusalem, 1998) Israel J. Math., 120, part B (2000), 291-334. | DOI | MR | Zbl

[Bes2] A. Besser, Syntomic regulators and p-adic integration. II. $K_2$ of curves, Proceedings of the Conference on p-adic Aspects of the Theory of Automorphic Representations (Jerusalem, 1998). Israel J. Math., 120, part B (2000), 335-359. | DOI | MR | Zbl

[Bl] S. J. Bloch, Higher regulators, algebraic K-theory, and zeta functions of elliptic curves, CRM Monograph Series, 11. American Mathematical Society, Providence, RI, 2000. x+97 pp. | MR

[Br] F. Brunault, Régulateurs p-adiques explicites pour le $K_2$ des courbes elliptiques, Actes de la Conférence ``Fonctions L et Arithmétique'', 29-57, Publ. Math. Besançon Algèbre Théorie Nr., Lab. Math. Besançon, Besançon, 2010. | MR

[Co] R. F. Coleman, Dilogarithms, regulators and p-adic L-functions, Invent. Math., 69, no. 2 (1982), 171-208. | fulltext EuDML | DOI | MR | Zbl

[Co-dS] R. F. Coleman - E. De Shalit, p-adic regulators on curves and special values of p-adic L-functions, Inventiones Math., 93 (1988), 239-266. | fulltext EuDML | DOI | MR | Zbl

[Colz] P. Colmez, La conjecture de Birch et Swinnerton-Dyer p-adique, (French) Astérisque No. 294 (2004), ix, 251-319. | MR

[De] P. Deligne, Valeurs de fonctions L et périodes d'intégrales, With an appendix by N. Koblitz and A. Ogus. Proc. Sympos. Pure Math., XXXIII, Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, pp. 313-346, Amer. Math. Soc., Providence, R.I., 1979. | MR

[DR] H. Darmon - V. Rotger, Diagonal cycles and Euler systems I: A p-adic Gross- Zagier formula, submitted. | DOI | MR | Zbl

[Ge] M. Gealy, On the Tamagawa number conjecture for motives attached to modular forms, PhD Thesis, California Institute of Technology, 2006. | MR

[GZ] B. H. Gross - D. B. Zagier, Heegner points and derivatives of L-series, Invent. Math., 84, no. 2 (1986), 225-320. | fulltext EuDML | DOI | MR | Zbl

[Ka] K. Kato, p-adic Hodge theory and values of zeta functions of modular forms. Cohomologies p-adiques et applications arithmétiques. III, Astérisque No. 295 (2004), ix, 117-290. | MR

[Ki] M. Kim, Classical motives and motivic L-functions, Autour des motifs-École d'été Franco-Asiatique de Géométrie Algébrique et de Théorie des Nombres/Asian-French Summer School on Algebraic Geometry and Number Theory. Volume I, 1-25, Panor. Synthèses, 29, Soc. Math. France, Paris, 2009. | MR

[Kit] K. Kitagawa, On standard p-adic L-functions of families of elliptic cusp forms, in p-adic monodromy and the Birch and Swinnerton-Dyer conjecture (Boston, MA, 1991), 81-110, Contemp. Math., 165, Amer. Math. Soc., Providence, RI, 1994. | DOI | MR

[Ko] V. A. Kolyvagin, Euler systems, The Grothendieck Festschrift, Vol. II, 435-483, Progr. Math., 87, Birkhäuser Boston, Boston, MA, 1990. | MR

[La] S. Lang, Cyclotomic fields I and II. Combined second edition. With an appendix by Karl Rubin. Graduate Texts in Mathematics, 121. Springer-Verlag, New York, 1990, xviii+433. | DOI | MR | Zbl

[Man] Ju. I. Manin, Parabolic points and zeta functions of modular curves, Izv. Akad. Nauk SSSR Ser. Mat., 36 (1972), 19-66. | MR | Zbl

[MSD] B. Mazur - P. Swinnerton-Dyer, Arithmetic of Weil curves, Invent. Math., 25 (1974), 1-61. | fulltext EuDML | DOI | MR | Zbl

[MTT] B. Mazur - J. Tate - J. Teitelbaum, On p-adic analogues of the conjectures of Birch and Swinnerton-Dyer, Invent. Math., 84, no. 1 (1986), 1-48. | fulltext EuDML | DOI | MR | Zbl

[PR1] B. Perrin-Riou, Points de Heegner et dérivées de fonctions L p-adiques, Invent. Math., 89, no. 3 (1987), 455-510. | fulltext EuDML | DOI | MR | Zbl

[PR2] B. Perrin-Riou, Fonctions L p-adiques d'une courbe elliptique et points rationnels, Ann. Inst. Fourier (Grenoble), 43, no. 4 (1993), 945-995. | fulltext EuDML | MR | Zbl

[Ru] K. C. Rubin, The main conjecture, Appendix to [La].

[Sil]J. H. Silverman, The arithmetic of elliptic curves. Second edition. Graduate Texts in Mathematics, 106. Springer, Dordrecht, 2009. xx+513 pp. | DOI | MR | Zbl

[So] C. Soulé , Éléments cyclotomiques en K-théorie, Journées arithmétiques de Besançon, Astérisque No. 147-148 (1987), 225-257. | MR

[SU] C. Skinner - E. Urban, The Iwasawa Main Conjecture for $GL_2$, preprint. | DOI | MR

[TW] R. Taylor - A. Wiles, Ring-theoretic properties of certain Hecke algebras, Ann. of Math. (2), 141, no. 3 (1995), 553-572. | DOI | MR | Zbl

[Wa1] L. C. Washington, Introduction to cyclotomic fields. Second edition. Graduate Texts in Mathematics, 83. Springer-Verlag, New York, 1997. xiv+487 pp. | DOI | MR | Zbl

[Wa2] L. C. Washington, Euler factors for p-adic L-functions, Mathematika, 25, no. 1 (1978), 68-75. | DOI | MR

[Wi1] A. Wiles, Modular elliptic curves and Fermat's last theorem, Ann. of Math. (2), 141, no. 3 (1995), 443-551. | DOI | MR | Zbl

[Wi2] A. Wiles, The Birch and Swinnerton-Dyer conjecture, on the Clay Mathematics Institute web site: http://www.claymath.org/millennium/ | Zbl