Eigenfunctions of the Laplace-Beltrami Operator, and Isoperimetric and Isocapacitary Inequalities
Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 1, pp. 167-190.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

@article{BUMI_2013_9_6_1_a6,
     author = {Cianchi, Andrea},
     title = {Eigenfunctions of the {Laplace-Beltrami} {Operator,} and {Isoperimetric} and {Isocapacitary} {Inequalities}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {167--190},
     publisher = {mathdoc},
     volume = {Ser. 9, 6},
     number = {1},
     year = {2013},
     zbl = {1280.58017},
     mrnumber = {3076846},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_1_a6/}
}
TY  - JOUR
AU  - Cianchi, Andrea
TI  - Eigenfunctions of the Laplace-Beltrami Operator, and Isoperimetric and Isocapacitary Inequalities
JO  - Bollettino della Unione matematica italiana
PY  - 2013
SP  - 167
EP  - 190
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_1_a6/
LA  - en
ID  - BUMI_2013_9_6_1_a6
ER  - 
%0 Journal Article
%A Cianchi, Andrea
%T Eigenfunctions of the Laplace-Beltrami Operator, and Isoperimetric and Isocapacitary Inequalities
%J Bollettino della Unione matematica italiana
%D 2013
%P 167-190
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_1_a6/
%G en
%F BUMI_2013_9_6_1_a6
Cianchi, Andrea. Eigenfunctions of the Laplace-Beltrami Operator, and Isoperimetric and Isocapacitary Inequalities. Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 1, pp. 167-190. http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_1_a6/

[ACMM] A. Alvino - A. Cianchi - V. G. Maz'Ya - A. Mercaldo, Well-posed elliptic Neumann problems involving irregular data and domains, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 1017-1054 | DOI | MR | Zbl

[Ba] A. Baider, Noncompact Riemannian manifolds with discrete spectra, J. Diff. Geom. 14 (1979), 41-57. | MR | Zbl

[BGM] M. Berger - P. Gauduchon - E. Mazet, Le spectre d'une variété Riemannienne, Lecture notes in Mathematics 194, Springer-Verlag, Berlin, 1971. | MR

[BC] I. Benjamini - J. Cao, A new isoperimetric theorem for surfaces of variable curvature, Duke Math. J. 85 (1996), 359-396. | DOI | MR | Zbl

[BS] M. S. Birman - M. Z. Solomjak, Spectral theory of self-adjoint operators in Hilbert space, D. Reidel Publishing Company, Dordrecht, 1986. | MR

[Bou] J. Bourgain, Geodesic restrictions and $L^p$-estimates for eigenfunctions of Riemannian surfaces, Amer. Math. Soc. Tranl. 226 (2009), 27-25. | DOI | MR | Zbl

[Bro] B. Brooks, On the spectrum of non-compact manifolds with finite volume, Math. Zeit. 9 (1984), 425-432. | fulltext EuDML | DOI | MR | Zbl

[Br] B. Brooks, The bottom of the spectrum of a Riemannian covering, J. Reine Angew. Math. 357 (1985), 101-114. | fulltext EuDML | DOI | MR | Zbl

[BuZa] Yu. D. Burago - V. A. Zalgaller, Geometric inequalities, Springer-Verlag, Berlin, 1988. | DOI | MR

[BD] V. I. Burenkov - E. B. Davies, Spectral stability of the Neumann Laplacian, J. Diff. Eq. 186 (2002), 485-508. | DOI | MR | Zbl

[Cha] I. Chavel, Eigenvalues in Riemannian geometry, Academic Press, New York, 1984. | MR | Zbl

[CF] I. Chavel - E. A. Feldman, Modified isoperimetric constants, and large time heat diffusion in Riemannian manifolds, Duke Math. J. 64 (1991), 473-499. | DOI | MR | Zbl

[Che] J. Cheeger, A lower bound for the smallest eigevalue of the Laplacian, in Problems in analysis, 195-199, Princeton Univ. Press, Princeton, 1970. | MR

[Chi] G. Chiti, A reverse Hölder inequality for the eigenfunctions of linear second order elliptic operators, Zeit. Angew. Math. Phys. (ZAMP) 33 (1982), 143-148. | DOI | MR | Zbl

[CGY] F. Chung - A. Grigor'Yan - S.-T. Yau, Higher eigenvalues and isoperimetric inequalities on Riemannian manifolds and graphs, Comm. Anal. Geom. 8 (2000), 969-1026. | DOI | MR | Zbl

[Ci1] A. Cianchi, On relative isoperimetric inequalities in the plane, Boll. Un. Mat. Ital. 3-B (1989), 289-326. | MR | Zbl

[Ci2] A. Cianchi, A sharp form of Poincaré type inequalities on balls and spheres, Z. Angew. Math. Phys. (ZAMP) 40 (1989), 558-569. | DOI | MR | Zbl

[Ci3] A. Cianchi, Moser-Trudinger inequalities without boundary conditions and isoperimetric problems, Indiana Univ. Math. J. 54 (2005), 669-705. | DOI | MR | Zbl

[CM1] A. Cianchi - V. G. Maz'Ya, Neumann problems and isocapacitary inequalities, J. Math. Pures Appl. 89 (2008), 71-105. | DOI | MR | Zbl

[CM2] A. Cianchi - V. G. Maz'Ya, On the discreteness of the spectrum of the Laplacian on complete Riemannian manifolds, J. Diff. Geom. 87 (2011), 469-491. | MR

[CM3] A. Cianchi - V. G. Maz'Ya, Bounds for eigenfunctions of the Laplacian on noncompact Riemannian manifolds, Amer. J. Math., to appear. | DOI | MR

[CM4] A. Cianchi - V. G. Maz'Ya, Boundedness of solutions to the Schrödinger equation under Neumann boundary conditions, J. Math. Pures Appl. 98 (2012), 654-688. | DOI | MR

[CGL] T. Coulhon - A. Grigor'Yan - D. Levin, On isoperimetric profiles of product spaces, Comm. Anal. Geom. 11 (2003), 85-120. | DOI | MR | Zbl

[CH] R. Courant - D. Hilbert, Methoden der mathematischen Physik, Springer, Berlin, 1937. | MR | Zbl

[DS] E. B. Davies - B. Simon, Spectral properties of the Neumann Laplacian of horns, Geom. Funct. Anal. 2 (1992), 105-117. | fulltext EuDML | DOI | MR | Zbl

[D] E. De Giorgi, Sulla proprietà isoperimetrica dell'ipersfera, nella classe degli insiemi aventi frontiera orientata di misura finita, (Italian) Atti Accad. Naz. Lincei. Mem. Cl. Sci. Fis. Mat. Nat. Sez. I 5 (1958) 33-44. | MR | Zbl

[Do1] H. Donnelly, Bounds for eigenfunctions of the Laplacian on compact Riemannian manifolds, J. Funct. Anal. 187 (2001), 247-261. | DOI | MR | Zbl

[Do2] H. Donnelly, Eigenvalue estimates for certain noncompact manifolds, Michigan Math. J. 31 (1984), 349-357. | DOI | MR | Zbl

[DL] H. Donnelly - P. Li, Pure point spectrum and negative curvature for noncompact manifolds, Duke Math. J. 46 (1979), 497-503. | MR | Zbl

[Es] J. F. Escobar, On the spectrum of the Laplacian on complete Riemannian manifolds, Comm. Part. Diff. Equat. 11 (1986), 63-85. | DOI | MR | Zbl

[Ga] S. Gallot, Inégalités isopérimétriques et analitiques sur les variétés riemanniennes, Asterisque 163 (1988), 31-91. | MR

[Gr1] A. Grigor'Yan, On the existence of positive fundamental solutions of the Laplace equation on Riemannian manifolds, Mat. Sbornik 128 (1985), 354-363 (Russian); English translation: Math. USSR Sb. 56 (1987), 349-358.

[Gr2] A. Grigor'Yan, Isoperimetric inequalities and capacities on Riemannian manifolds, in The Maz'ya anniversary collection, Vol. 1 (Rostock, 1998), 139-153, Oper. Theory Adv. Appl., 109, Birkhuser, Basel, 1999. | MR

[GP] R. Grimaldi - P. Pansu, Calibrations and isoperimetric profiles, Amer. J. Math. 129 (2007), 315-350. | DOI | MR | Zbl

[HK] P. Haiasz - P. Koskela, Isoperimetric inequalites and imbedding theorems in irregular domains, J. London Math. Soc. 58 (1998), 425-450. | DOI | MR

[He] E. Hebey, Nonlinear analysis on manifolds: Sobolev spaces and inequalities, American Math. Soc., Providence, 1999. | MR | Zbl

[HSS] R. Hempel - L. Seco - B. Simon, The essential spectrum of Neumann Laplacians on some bounded singular domains, J. Funct. Anal. 102 (1991), 448-483. | DOI | MR | Zbl

[HHN] M. Hoffmann-Ostenhof - T. Hoffmann-Ostenhof - N. Nadirashvili, On the multiplicity of eigenvalues of the Laplacian on surfaces, Ann. Global Anal. Geom. 17 (1999), 43-48. | DOI | MR | Zbl

[JMS] V. Jaksic - S. Molchanov - B. Simon, Eigenvalue asymptotics of the Neumann Laplacian of regions and manifolds with cusps, J. Funct. Anal. 106 (1992), 59-79. | DOI | MR | Zbl

[KM] T. Kilpeläinen - J. Malý, Sobolev inequalities on sets with irregular boundaries, Z. Anal. Anwendungen 19 (2000), 369-380. | fulltext EuDML | DOI | MR

[Kl1] R. Kleine, Discreteness conditions for the Laplacian on complete non-compact Riemannian manifolds, Math. Zeit. 198 (1988), 127-141. | fulltext EuDML | DOI | MR | Zbl

[Kl2] R. Kleine, Warped products with discrete spectra, Results Math. 15 (1989), 81-103. | DOI | MR | Zbl

[Kl] B. Kleiner, An isoperimetric comparison theorem, Invent. Math. 108 (1992), 37-47. | fulltext EuDML | DOI | MR | Zbl

[La] D. A. Labutin, Embedding of Sobolev spaces on Hölder domains, Proc. Steklov Inst. Math. 227 (1999), 163-172 (Russian); English translation: Trudy Mat. Inst. 227 (1999), 170-179. | MR

[LP] P.-L. Lions - F. Pacella, Isoperimetric inequalities for convex cones, Proc. Amer. Math. Soc. 109 (1990), 477-485. | DOI | MR | Zbl

[MZ] J. Malyâ - W. P. Ziemer, Fine regularity of solutions of elliptic partial differential equations, American Mathematical Society, Providence, 1997. | DOI | MR

[Ma1] V. G. Maz'Ya, Classes of regions and imbedding theorems for function spaces, Dokl. Akad. Nauk. SSSR 133 (1960), 527-530 (Russian); English translation: Soviet Math. Dokl. 1 (1960), 882-885. | MR

[Ma2] V. G. Maz'Ya, Some estimates of solutions of second-order elliptic equations, Dokl. Akad. Nauk. SSSR 137 (1961), 1057-1059 (Russian); English translation: Soviet Math. Dokl. 2 (1961), 413-415. | MR

[Ma3] V. G. Maz'Ya, On p-conductivity and theorems on embedding certain functional spaces into a C-space, Dokl. Akad. Nauk SSSR, 140 (1961), 299-302 (Russian). | MR

[Ma4] V. G. Maz'Ya, On the solvability of the Neumann problem, Dokl. Akad. Nauk SSSR, 147 (1962), 294-296 (Russian). | MR

[Ma5] V. G. Maz'Ya, The Neumann problem in regions with nonregular boundaries, Sibirsk. Mat. Ž. 9 (1968), 1322-1350 (Russian). | MR

[Ma6] V. G. Maz'Ya, On weak solutions of the Dirichlet and Neumann problems, Trusdy Moskov. Mat. Obšč. 20 (1969), 137-172 (Russian); English translation: Trans. Moscow Math. Soc. 20 (1969), 135-172 | MR

[Ma7] V. G. Maz'Ya, Sobolev spaces with applications to elliptic partial differential equations, Springer, Heidelberg, 2011. | DOI | MR

[MHH] F. Morgan - H. Howards - M. Hutchings, The isoperimetric problem on surfaces of revolution of decreasing Gauss curvature, Trans. Amer. Math. Soc, 352 (2000), 4889-4909. | DOI | MR | Zbl

[MJ] F. Morgan - D. L. Johnson, Some sharp isoperimetric theorems for Riemannian manifolds, Indiana Univ. Math. J. 49 (2000), 1017-1041. | DOI | MR | Zbl

[Na] N. Nadirashvili, Isoperimetric inequality for the second eigenvalue of a sphere, J. Diff. Geom. 61 (2002), 335-340. | MR | Zbl

[PR] L. E. Payne - M. E. Rayner, An isoperimetric inequality for the first eigenfunction in the fixed membrane problem, Z. Angew. Math. Phys. 23 (1972), 13-15. | DOI | MR | Zbl

[Pi] Ch. Pittet, The isoperimetric profile of homogeneous Riemannian manifolds, J. Diff. Geom. 54 (2000), 255-302. | MR | Zbl

[RS] M. Reed - B. Simon, Analysis of Operators IV, Academic Press, New York, 1972.

[Ri] M. Ritoré , Constant geodesic curvature curves and isoperimetric domains in rotationally symmetric surfaces, Comm. Anal. Geom. 9 (2001), 1093-1138. | DOI | MR | Zbl

[Ro] W. Rölke, Uber den Laplace-Operator auf Riemannschen Mannigfaltigkeiten mit diskontinuierlichen Gruppen, Math. Nachr. 21 (1960), 132-149.

[Sa] L. Saloff-Coste, Sobolev inequalities in familiar and unfamiliar settings, in Sobolev spaces in mathematics, Vol I, Sobolev type inequalities, V.G. Maz'ya editor, Springer, 2009. | DOI | MR | Zbl

[SS] H. F. Smith - C. D. Sogge, On the $L^p$ norm of spectral clusters for compact manifolds with boundary, Acta Math. 198 (2007), 107-153. | DOI | MR | Zbl

[So] C. D. Sogge, Lectures on eigenfunctions of the Laplacian, Topics in mathematical analysis, 337-360, Ser. Anal. Appl. Comput., 3, World Sci. Publ., Hackensack, NJ, 2008. | DOI | MR | Zbl

[SZ] C. D. Sogge - S. Zelditch, Riemannian manifolds with maximal eigenfunction growth, Duke Math. J. 114 (2002), 387-437. | DOI | MR | Zbl

[St] R. S. Strichartz, Analysis of the Laplacian on complete Riemannian manifolds, J. Funct. Anal. 52 (1983), 48-79. | DOI | MR | Zbl

[Ya] S. T. Yau, Isoperimetric constants and the first eigenvalue of a compact manifold, Ann. Sci. Ecole Norm. Sup. 8 (1975), 487-507. | fulltext EuDML | MR | Zbl

[Zi] W. P. Ziemer, Weakly differentiable functions, Springer-Verlag, New York, 1989. | DOI | MR | Zbl