Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2013_9_6_1_a4, author = {Lassila, Toni and Manzoni, Andrea and Quarteroni, Alfio and Rozza, Gianluigi}, title = {Generalized {Reduced} {Basis} {Methods} and n-width {Estimates} for the {Approximation} of the {Solution} {Manifold} of {Parametric} {PDEs}}, journal = {Bollettino della Unione matematica italiana}, pages = {113--135}, publisher = {mathdoc}, volume = {Ser. 9, 6}, number = {1}, year = {2013}, zbl = {1273.35024}, mrnumber = {3076845}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_1_a4/} }
TY - JOUR AU - Lassila, Toni AU - Manzoni, Andrea AU - Quarteroni, Alfio AU - Rozza, Gianluigi TI - Generalized Reduced Basis Methods and n-width Estimates for the Approximation of the Solution Manifold of Parametric PDEs JO - Bollettino della Unione matematica italiana PY - 2013 SP - 113 EP - 135 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_1_a4/ LA - en ID - BUMI_2013_9_6_1_a4 ER -
%0 Journal Article %A Lassila, Toni %A Manzoni, Andrea %A Quarteroni, Alfio %A Rozza, Gianluigi %T Generalized Reduced Basis Methods and n-width Estimates for the Approximation of the Solution Manifold of Parametric PDEs %J Bollettino della Unione matematica italiana %D 2013 %P 113-135 %V 6 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_1_a4/ %G en %F BUMI_2013_9_6_1_a4
Lassila, Toni; Manzoni, Andrea; Quarteroni, Alfio; Rozza, Gianluigi. Generalized Reduced Basis Methods and n-width Estimates for the Approximation of the Solution Manifold of Parametric PDEs. Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 1, pp. 113-135. http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_1_a4/
[1] Solving Frontier Problems of Physics: The Decomposition Method, Kluwer Academic Publishers (1994). | DOI | MR | Zbl
,[2] The p-version of the finite element method, SIAM J. Numer. Anal. 18 (3) (1981), 515-545. | DOI | MR | Zbl
- - ,[3] Convergence Rates for Greedy Algorithms in Reduced Basis Methods, SIAM J. Math. Anal. 43, n. 3 (2011), 1457-1472. | DOI | MR | Zbl
- - - - - ,[4] A priori convergence of the Greedy algorithm for the parametrized reduced basis method, ESAIM Math. Model. Numer. Anal. 46, n. 3 (2012), 595-603. | fulltext EuDML | DOI | MR | Zbl
- - - - ,[5] A-posteriori error analysis of the reduced basis method for non-affine parameterized nonlinear PDEs, SIAM J. Numer. Anal 47, n. 3 (2009), 2001-2022. | DOI | MR | Zbl
- - ,[6] A low-cost, goal-oriented `compact proper orthogonal decomposition' basis for model reduction of static systems, Int. J. Numer. Methods Engrg. 86 (3) (2011), 381-402. | DOI | MR | Zbl
- ,[7] Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs, Preprint, 2010. | DOI | MR
- - ,[8] Reduced basis error bound computation of parameter-dependent Navier-Stokes equations by the natural norm approach, SIAM J. Num. Anal. 46, n. 4 (2008), 2039-2067. | DOI | MR | Zbl
,[9] An hp certified reduced basis method for parametrized parabolic partial differential equations, Math. Comput. Modelling Dynam. Systems, 17, n. 4 (2011), 395-422. | DOI | MR | Zbl
- - ,[10] N-widths, sup-infs, and optimality ratios for the k-version of the isogeometric finite element method, Comput. Methods Appl. Mech. Engrg. 198, n. 21-26 (2009), 1726-1741. | DOI | MR
- - - ,[11] Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations, ESAIM Math. Modelling Numer. Anal. 41 (3) (2007), 575-605. | fulltext EuDML | DOI | MR | Zbl
- - - ,[12] Reduced-order models for parameter dependent geometries based on shape sensitivity analysis, J. Comp. Phys. 229, n. 4 (2010), 1327-1352. | DOI | MR | Zbl
- - - ,[13] Local improvements to reduced-order models using sensitivity analysis of the proper orthogonal decomposition, J. Fluid Mech. 629 (2009), 41-72. | DOI | MR | Zbl
- - ,[14] A natural-norm successive constraint method for inf-sup lower bounds, Comput. Methods Appl. Mech. Engrg. 199 (2010), 29-32. | DOI | MR | Zbl
- - - - ,[15] A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability costants, C. R. Acad. Sci. Paris. Sér. I Math. 345 (2007), 473-478. | DOI | MR | Zbl
- - - ,[16] A reduced order method for simulation and control of fluid flows, J. Comp. Phys. 143 (2) (1998). | DOI | MR | Zbl
- ,[17] On the approximation of stability factors for general parametrized partial differential equations with a two-level affine decomposition, ESAIM Math. Model. Numer. Anal. 46 (2012), 1555-1576. | fulltext EuDML | DOI | MR | Zbl
- - ,[18] Reduced basis method for the rapid and reliable solution of partial differential equations, Eur. Math. Soc., volume III (Zürich, 2006), 1255-1270. | MR | Zbl
,[19] Global a priori convergence theory for reduced-basis approximation of single-parameter symmetric coercive elliptic partial differential equations, C. R. Acad. Sci. Paris. Sér. I Math. 335 (2002), 289-294. | DOI | MR | Zbl
- - ,[20] A priori convergence theory for reduced-basis approximations of single-parametric elliptic partial differential equations, J. Sci. Comput. 17, n. 1-4 (2002), 437-446. | DOI | MR | Zbl
- - ,[21] Reduced models for optimal control, shape optimization and inverse problems in haemodynamics, PhD thesis, N. 5402, École Polytechnique Fédérale de Lausanne (2012).
,[22] On n-widths for elliptic problems, J. Math. Anal. Appl. 247 (2000), 272-289. | DOI | MR | Zbl
,[23] Spline spaces are optimal for $L^2$ n-width, Illinois J. Math. 22, (4) (1978). | MR | Zbl
- ,[24] Recent advances in reduction methods for nonlinear problems, Comput. Struct. 13, n. 1-3 (1981), 31-44. | DOI | MR
,[25] The reduced basis method for incompressible viscous flow calculations, SIAM J. Sci. Stat. Comput. 10 (1989), 777-786. | DOI | MR | Zbl
,[26] n-Widths in Approximation Theory, Springer-Verlag, Ergebnisse, 1985. | DOI | MR | Zbl
,[27] Certified Reduced Basis Approximation for Parametrized PDEs and Applications, J. Math. Ind. 3 n. 1 (2011). | DOI | MR | Zbl
- - ,[28] Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations, Arch. Comput. Methods Engrg. 15 (2008), 229-275. | DOI | MR | Zbl
- - ,[29] Comparison of the reduced-basis and POD a posteriori error estimators for an elliptic linear-quadratic optimal control problem, Math. Comp. Model. Dyn. 17, n. 4 (2011), 355-369. | DOI | MR | Zbl
- - ,[30] Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations: rigorous reduced-basis a posteriori error bounds, Int. J. Numer. Meth. Fluids, 47 (8-9) (2005), 773-788. | DOI | MR | Zbl
- ,