Generalized Reduced Basis Methods and n-width Estimates for the Approximation of the Solution Manifold of Parametric PDEs
Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 1, pp. 113-135

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

The set of solutions of a parameter-dependent linear partial differential equation with smooth coefficients typically forms a compact manifold in a Hilbert space. In this paper we review the generalized reduced basis method as a fast computational tool for the uniform approximation of the solution manifold. We focus on operators showing an affine parametric dependence, expressed as a linear combination of parameter-independent operators through some smooth, parameter-dependent scalar functions. In the case that the parameter-dependent operator has a dominant term in its affine expansion, one can prove the existence of exponentially convergent uniform approximation spaces for the entire solution manifold. These spaces can be constructed without any assumptions on the parametric regularity of the manifold - only spatial regularity of the solutions is required. The exponential convergence rate is then inherited by the generalized reduced basis method. We provide a numerical example related to parametrized elliptic equations confirming the predicted convergence rates.
@article{BUMI_2013_9_6_1_a4,
     author = {Lassila, Toni and Manzoni, Andrea and Quarteroni, Alfio and Rozza, Gianluigi},
     title = {Generalized {Reduced} {Basis} {Methods} and n-width {Estimates} for the {Approximation} of the {Solution} {Manifold} of {Parametric} {PDEs}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {113--135},
     publisher = {mathdoc},
     volume = {Ser. 9, 6},
     number = {1},
     year = {2013},
     zbl = {1273.35024},
     mrnumber = {3076845},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_1_a4/}
}
TY  - JOUR
AU  - Lassila, Toni
AU  - Manzoni, Andrea
AU  - Quarteroni, Alfio
AU  - Rozza, Gianluigi
TI  - Generalized Reduced Basis Methods and n-width Estimates for the Approximation of the Solution Manifold of Parametric PDEs
JO  - Bollettino della Unione matematica italiana
PY  - 2013
SP  - 113
EP  - 135
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_1_a4/
LA  - en
ID  - BUMI_2013_9_6_1_a4
ER  - 
%0 Journal Article
%A Lassila, Toni
%A Manzoni, Andrea
%A Quarteroni, Alfio
%A Rozza, Gianluigi
%T Generalized Reduced Basis Methods and n-width Estimates for the Approximation of the Solution Manifold of Parametric PDEs
%J Bollettino della Unione matematica italiana
%D 2013
%P 113-135
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_1_a4/
%G en
%F BUMI_2013_9_6_1_a4
Lassila, Toni; Manzoni, Andrea; Quarteroni, Alfio; Rozza, Gianluigi. Generalized Reduced Basis Methods and n-width Estimates for the Approximation of the Solution Manifold of Parametric PDEs. Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 1, pp. 113-135. http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_1_a4/