Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2013_9_6_1_a3, author = {Visintin, Augusto}, title = {Variational {Formulation} of {Phase} {Transitions} with {Glass} {Formation}}, journal = {Bollettino della Unione matematica italiana}, pages = {75--111}, publisher = {mathdoc}, volume = {Ser. 9, 6}, number = {1}, year = {2013}, zbl = {1276.35007}, mrnumber = {3077114}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_1_a3/} }
TY - JOUR AU - Visintin, Augusto TI - Variational Formulation of Phase Transitions with Glass Formation JO - Bollettino della Unione matematica italiana PY - 2013 SP - 75 EP - 111 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_1_a3/ LA - en ID - BUMI_2013_9_6_1_a3 ER -
Visintin, Augusto. Variational Formulation of Phase Transitions with Glass Formation. Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 1, pp. 75-111. http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_1_a3/
[1] Free boundary problems in solidification of alloys. S.I.A.M. J. Math. Anal. 11 (1980), 254-264. | DOI | MR | Zbl
- ,[2] Mathematical Modeling of Melting and Freezing Processes. Hemisphere Publishing, Washington DC 1993.
- ,[3] Macroscopic global modeling of binary alloy solidification processes. Quart. Appl. Math. 43 (1985), 143-158. | DOI | MR | Zbl
- - ,[4] Quasilinear elliptic-parabolic differential equations. Math. Z. 183 (1983), 311-341. | fulltext EuDML | DOI | MR | Zbl
- ,[5] New results on Gamma-limits of integral functionals. Preprint SISSA, Trieste, 2012. | DOI | MR
- - ,[6] Variational Convergence for Functions and Operators. Pitman, Boston 1984. | MR | Zbl
,[7] Nonlinear Differential Equations of Monotone Types in Banach Spaces. Springer, Berlin 2010. | DOI | MR | Zbl
,[8] $\Gamma$-Convergence for Beginners. Oxford University Press, Oxford 2002. | DOI | MR | Zbl
,[9] Homogenization of Multiple Integrals. Oxford University Press, Oxford 1998. | MR | Zbl
- ,[10] Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert. North-Holland, Amsterdam 1973. | MR | Zbl
,[11] Un principe variationnel associé à certaines équations paraboliques. I. Le cas indépendant du temps and II. Le cas dépendant du temps. C. R. Acad. Sci. Paris Sér. A-B, 282 (1976), 971-974, and ibid. 1197-1198. | MR | Zbl
- ,[12] Hysteresis and Phase Transitions. Springer, Heidelberg 1996. | DOI | MR | Zbl
- ,[13] Maximal monotone operators, convex functions, and a special family of enlargements. Set-Valued Analysis 10 (2002), 297-316. | DOI | MR | Zbl
- ,[14] Maximal monotonicity, conjugation and the duality product. Proc. Amer. Math. Soc. 131 (2003), 2379-2383. | DOI | MR | Zbl
- ,[15] Thermodynamics and an Introduction to Thermostatistics. Wiley, New York 1985. | Zbl
,[16] Principles of Solidification. Wiley, New York 1964.
,[17] convergence of monotone operators, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 7 (1990), 123-160. | fulltext EuDML | DOI | MR | Zbl
- - , G-[18] The Theory of Transformations in Metals and Alloys. Part 1: Equilibrium and General Kinetic Theory. Pergamon Press, London 2002.
,[19] On a class of doubly nonlinear evolution problems. Communications in P.D.E.s, 15 (1990), 737-756. | DOI | MR | Zbl
- ,[20] An Introduction to $\Gamma$-Convergence. Birkhäuser, Boston 1993. | DOI | MR | Zbl
,[21] Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 58 (1975), 842-850. | fulltext EuDML | MR
- ,[22] Thermodynamics of Irreversible Processes. Amsterdam, North-Holland 1961. | MR | Zbl
,[23] Non-equilibrium Thermodynamics. Amsterdam, North-Holland 1962. | MR | Zbl
- ,[24] Implicit degenerate evolution equations and applications. S.I.A.M. J. Math. Anal. 12 (1981), 731-751. | DOI | MR | Zbl
- ,[25] A model for non-equilibrium thermodynamic processes involving phase changes. J. Inst. Math. Appl. 24 (1979), 425-438. | MR | Zbl
,[26] Analyse Convexe et Problèmes Variationnelles. Dunod Gauthier-Villars, Paris 1974. | MR
- ,[27] The thermodynamics of irreversible processes I: The simple fluid. Physical Reviews, 58 (1940). The thermodynamics of irreversible processes II. Fluid mixtures. Physical Reviews 58 (1940). | Zbl
,[28] Weak and Variational Methods for Moving Boundary Problems. Pitman, Boston, 1982. | MR | Zbl
- ,[29] Convex Cones, Sets, and Functions. Princeton Univ., 1953. | Zbl
,[30] Representing monotone operators by convex functions. Workshop/Miniconference on Functional Analysis and Optimization (Canberra, 1988), 59-65, Proc. Centre Math. Anal. Austral. Nat. Univ., 20, Austral. Nat. Univ., Canberra, 1988. | MR | Zbl
,[31] Solidification Processing. McGraw-Hill, New York 1973.
,[32] Homogenization of monotone operators in divergence form with $x$-dependent multivalued graphs. Ann. Mat. Pura Appl. (4) 118 (2009), 631-652. | DOI | MR | Zbl
- - ,[33] Phase Change in Mechanics. Springer, Berlin 2012.
,[34] A variational theory for monotone vector fields. J. Fixed Point Theory Appl. 4 (2008), 107-135. | DOI | MR | Zbl
,[35] Self-Dual Partial Differential Systems and their Variational Principles. Springer, 2009. | MR | Zbl
,[36] A variational principle for gradient flows. Math. Ann. 330 (2004), 519-549. | DOI | MR | Zbl
- ,[37] The Classical Stefan Problem. Basic Concepts, Modelling and Analysis. North-Holland Series. Elsevier, Amsterdam 2003. | MR
,[38] Thermomechanics of Evolving Phase Boundaries in the Plane. Clarendon Press, Oxford 1993. | MR | Zbl
,[39] Convex Analysis and Optimization Algorithms. Springer, Berlin 1993.
- ,[40] Modern Thermodynamics. Wiley, New York 1998.
- ,[41] Fundamentals of Solidification. Trans Tech, Aedermannsdorf 1989.
- ,[42] Non-Homogeneous Boundary Value Problems and Applications. Vols. I, II. Springer, Berlin 1972 (French edition: Dunod, Paris 1968). | MR
- ,[43] Solidification of alloys and the Gibbs-Thomson law. Preprint, 1994.
,[44] Phase transition in a multicomponent system. Manuscripta Math. 43 (1983), 261-288. | fulltext EuDML | DOI | MR | Zbl
- ,[45] Monotone operators representable by l.s.c. convex functions. Set-Valued Anal. 13 (2005), 21-46. | DOI | MR | Zbl
- ,[46] Minimal convex functions bounded below by the duality product. Proc. Amer. Math. Soc. 136 (2008), 873-878. | DOI | MR | Zbl
- ,[47] A convex representation of maximal monotone operators. J. Nonlinear Convex Anal. 2 (2001), 243-247. | MR | Zbl
- ,[48] Brndsted-Rockafellar property and maximality of monotone operators representable by convex functions in non-reflexive Banach spaces. J. Convex Analysis 15 (2008), 693-706. | MR | Zbl
- ,[49] A History of Thermodynamics. Springer, Berlin 2007.
,[50] Entropy and Energy. A Universal Competition. Springer, Berlin 2005. | MR
- ,[51] A history of thermodynamics of irreversible processes. (in preparation).
- ,[52] Deux théorèmes de minimum pour certains systèmes dissipatifs. C. R. Acad. Sci. Paris Sér. A-B 282 (1976), A1035-A1038. | MR | Zbl
,[53] Thermodynamically consistent models of phase-field type for the kinetics of phase transitions. Physica D 43 (1990), 44-62. | DOI | MR | Zbl
- ,[54] On the relation between the standard phase-field model and a ``thermodynamically consistent'' phase-field model. Physica D, 69 (1993), 107-113. | DOI | MR | Zbl
- ,[55] Thermodynamics of Irreversible Processes. Wiley-Interscience, New York 1967. | MR | Zbl
,[56] Convex Analysis. Princeton University Press, Princeton 1969. | MR
,[57] The Brezis-Ekeland principle for doubly nonlinear equations. S.I.A.M. J. Control Optim. 8 (2008), 1615-1642. | DOI | MR | Zbl
,[58] A numerical simulation of a binary alloy solidification process. S.I.A.M. J. Sci. Statist. Comput. 6 (1985), 911-922. | DOI | MR | Zbl
- - ,[59] Über einige Probleme der Theorie der Wärmeleitung. Sitzungber., Wien, Akad. Mat. Natur. 98 (1889), 473-484. Also ibid. pp. 614-634, 965-983, 1418-1442.
,[60] Fixed points in the family of convex representations of a maximal monotone operator. Proc. Amer. Math. Soc. 131 (2003), 3851-3859. | DOI | MR | Zbl
,[61] Nonlocal effects induced by homogenization. In: Partial Differential Equations and the Calculus of Variations, Vol. II (F. Colombini, A. Marino, L. Modica and S. Spagnolo, Eds.) Birkhäuser (Boston 1989), 925-938. | MR
,[62] Memory effects and homogenization. Arch. Rational Mech. Anal. 111 (1990), 121-133. | DOI | MR | Zbl
,[63] The General Theory of Homogenization. A Personalized Introduction. Springer, Berlin; UMI, Bologna, 2009. | DOI | MR | Zbl
,[64] A bibliography on moving-free boundary problems for the heat-diffusion equation. The Stefan and related problems. Universidad Austral, Departamento de Matematica, Rosario, 2000. | MR | Zbl
,[65] Models of Phase Transitions. Birkhäuser, Boston 1996. | DOI | MR | Zbl
,[66] Introduction to Stefan-type problems. In: Handbook of Differential Equations: Evolutionary Differential Equations vol. IV (C. Dafermos and M. Pokorny, eds.) North-Holland, Amsterdam (2008), chap. 8, 377-484. | MR | Zbl
,[67] Extension of the Brezis-Ekeland-Nayroles principle to monotone operators. Adv. Math. Sci. Appl. 18 (2008), 633-650. | MR | Zbl
,[68] Phase transitions and glass formation. S.I.A.M. J. Math. Anal. 41 (2009), 1725-1756. | DOI | MR | Zbl
,[69] Scale-transformations in the homogenization of nonlinear magnetic processes. Archive Rat. Mech. Anal. 198 (2010), 569-611. | DOI | MR | Zbl
,[70] Structural stability of doubly nonlinear flows. Boll. Un. Mat. Ital. IV (2011), 363-391. | fulltext bdim | fulltext EuDML | MR | Zbl
,[71] On the structural stability of monotone flows. Boll. Un. Mat. Ital. IV (2011), 471-479. | fulltext bdim | fulltext EuDML | MR | Zbl
,[72] Structural stability of rate-independent nonpotential flows. Discrete and Continuous Dynamical Systems 6 (2013), 257-275. doi:10.3934/dcdss.2013.6.257 | DOI | MR | Zbl
,[73] Variational formulation and structural stability of monotone equations. Calc. Var. Partial Differential Equations (in press). | DOI | MR | Zbl
,[74] The Solid-Liquid Interface. Cambridge Univ. Press, Cambridge 1973.
,[75] The Thermodynamics of Fluid Systems. Clarendon Press, Oxford 1975.
,[76] Nonlinear functional analysis and its applications. II/B. Nonlinear monotone operators. Springer, New York 1990. | DOI | MR | Zbl
,