Variational Formulation of Phase Transitions with Glass Formation
Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 1, pp. 75-111.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In the framework of the theory of nonequilibrium thermodynamics, phase transitions with glass formation in binary alloys are here modelled as a multi-non-linear system of PDEs. A weak formulation is provided for an initial- and boundary-value problem, and existence of a solution is studied. This model is then reformulated as a minimization problem, on the basis of a theory that was pioneered by Fitzpatrick [MR 1009594]. This provides a tool for the analysis of compactness and structural stability of the dependence of the solution(s) on data and operators, via De Giorgi's notion of $\gamma$-convergence. This latter issue is here dealt with in some simpler settings.
@article{BUMI_2013_9_6_1_a3,
     author = {Visintin, Augusto},
     title = {Variational {Formulation} of {Phase} {Transitions} with {Glass} {Formation}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {75--111},
     publisher = {mathdoc},
     volume = {Ser. 9, 6},
     number = {1},
     year = {2013},
     zbl = {1276.35007},
     mrnumber = {3077114},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_1_a3/}
}
TY  - JOUR
AU  - Visintin, Augusto
TI  - Variational Formulation of Phase Transitions with Glass Formation
JO  - Bollettino della Unione matematica italiana
PY  - 2013
SP  - 75
EP  - 111
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_1_a3/
LA  - en
ID  - BUMI_2013_9_6_1_a3
ER  - 
%0 Journal Article
%A Visintin, Augusto
%T Variational Formulation of Phase Transitions with Glass Formation
%J Bollettino della Unione matematica italiana
%D 2013
%P 75-111
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_1_a3/
%G en
%F BUMI_2013_9_6_1_a3
Visintin, Augusto. Variational Formulation of Phase Transitions with Glass Formation. Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 1, pp. 75-111. http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_1_a3/

[1] V. Alexiades - J. R. Cannon, Free boundary problems in solidification of alloys. S.I.A.M. J. Math. Anal. 11 (1980), 254-264. | DOI | MR | Zbl

[2] V. Alexiades - A. D. Solomon, Mathematical Modeling of Melting and Freezing Processes. Hemisphere Publishing, Washington DC 1993.

[3] V. Alexiades - D. G. Wilson - A. D. Solomon, Macroscopic global modeling of binary alloy solidification processes. Quart. Appl. Math. 43 (1985), 143-158. | DOI | MR | Zbl

[4] H. W. Alt - S. Luckhaus, Quasilinear elliptic-parabolic differential equations. Math. Z. 183 (1983), 311-341. | fulltext EuDML | DOI | MR | Zbl

[5] N. Ansini - G. Dal Maso - C. I. Zeppieri, New results on Gamma-limits of integral functionals. Preprint SISSA, Trieste, 2012. | DOI | MR

[6] H. Attouch, Variational Convergence for Functions and Operators. Pitman, Boston 1984. | MR | Zbl

[7] V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces. Springer, Berlin 2010. | DOI | MR | Zbl

[8] A. Braides, $\Gamma$-Convergence for Beginners. Oxford University Press, Oxford 2002. | DOI | MR | Zbl

[9] A. Braides - A. Defranceschi, Homogenization of Multiple Integrals. Oxford University Press, Oxford 1998. | MR | Zbl

[10] H. Brezis, Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert. North-Holland, Amsterdam 1973. | MR | Zbl

[11] H. Brezis - I. Ekeland, Un principe variationnel associé à certaines équations paraboliques. I. Le cas indépendant du temps and II. Le cas dépendant du temps. C. R. Acad. Sci. Paris Sér. A-B, 282 (1976), 971-974, and ibid. 1197-1198. | MR | Zbl

[12] M. Brokate - J. Sprekels, Hysteresis and Phase Transitions. Springer, Heidelberg 1996. | DOI | MR | Zbl

[13] R. S. Burachik - B. F. Svaiter, Maximal monotone operators, convex functions, and a special family of enlargements. Set-Valued Analysis 10 (2002), 297-316. | DOI | MR | Zbl

[14] R. S. Burachik - B. F. Svaiter, Maximal monotonicity, conjugation and the duality product. Proc. Amer. Math. Soc. 131 (2003), 2379-2383. | DOI | MR | Zbl

[15] H. B. Callen, Thermodynamics and an Introduction to Thermostatistics. Wiley, New York 1985. | Zbl

[16] B. Chalmers, Principles of Solidification. Wiley, New York 1964.

[17] V. Chiadò Piat - G. Dal Maso - A. Defranceschi, G-convergence of monotone operators, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 7 (1990), 123-160. | fulltext EuDML | DOI | MR | Zbl

[18] J. W. Christian, The Theory of Transformations in Metals and Alloys. Part 1: Equilibrium and General Kinetic Theory. Pergamon Press, London 2002.

[19] P. L. Colli - A. Visintin, On a class of doubly nonlinear evolution problems. Communications in P.D.E.s, 15 (1990), 737-756. | DOI | MR | Zbl

[20] G. Dal Maso, An Introduction to $\Gamma$-Convergence. Birkhäuser, Boston 1993. | DOI | MR | Zbl

[21] E. De Giorgi - T. Franzoni, Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 58 (1975), 842-850. | fulltext EuDML | MR

[22] S. R. De Groot, Thermodynamics of Irreversible Processes. Amsterdam, North-Holland 1961. | MR | Zbl

[23] S. R. De Groot - P. Mazur, Non-equilibrium Thermodynamics. Amsterdam, North-Holland 1962. | MR | Zbl

[24] E. Dibenedetto - R. E. Showalter, Implicit degenerate evolution equations and applications. S.I.A.M. J. Math. Anal. 12 (1981), 731-751. | DOI | MR | Zbl

[25] J. D. P. Donnelly, A model for non-equilibrium thermodynamic processes involving phase changes. J. Inst. Math. Appl. 24 (1979), 425-438. | MR | Zbl

[26] I. Ekeland - R. Temam, Analyse Convexe et Problèmes Variationnelles. Dunod Gauthier-Villars, Paris 1974. | MR

[27] C. Eckart, The thermodynamics of irreversible processes I: The simple fluid. Physical Reviews, 58 (1940). The thermodynamics of irreversible processes II. Fluid mixtures. Physical Reviews 58 (1940). | Zbl

[28] C. M. Elliott - J. R. Ockendon, Weak and Variational Methods for Moving Boundary Problems. Pitman, Boston, 1982. | MR | Zbl

[29] W. Fenchel, Convex Cones, Sets, and Functions. Princeton Univ., 1953. | Zbl

[30] S. Fitzpatrick, Representing monotone operators by convex functions. Workshop/Miniconference on Functional Analysis and Optimization (Canberra, 1988), 59-65, Proc. Centre Math. Anal. Austral. Nat. Univ., 20, Austral. Nat. Univ., Canberra, 1988. | MR | Zbl

[31] M. C. Flemings, Solidification Processing. McGraw-Hill, New York 1973.

[32] G. Francfort - F. Murat - L. Tartar, Homogenization of monotone operators in divergence form with $x$-dependent multivalued graphs. Ann. Mat. Pura Appl. (4) 118 (2009), 631-652. | DOI | MR | Zbl

[33] M. Frémond, Phase Change in Mechanics. Springer, Berlin 2012.

[34] N. Ghoussoub, A variational theory for monotone vector fields. J. Fixed Point Theory Appl. 4 (2008), 107-135. | DOI | MR | Zbl

[35] N. Ghoussoub, Self-Dual Partial Differential Systems and their Variational Principles. Springer, 2009. | MR | Zbl

[36] N. Ghoussoub - L. Tzou, A variational principle for gradient flows. Math. Ann. 330 (2004), 519-549. | DOI | MR | Zbl

[37] S. C. Gupta, The Classical Stefan Problem. Basic Concepts, Modelling and Analysis. North-Holland Series. Elsevier, Amsterdam 2003. | MR

[38] M. E. Gurtin, Thermomechanics of Evolving Phase Boundaries in the Plane. Clarendon Press, Oxford 1993. | MR | Zbl

[39] J.-B. Hiriart-Urruty - C. Lemarechal, Convex Analysis and Optimization Algorithms. Springer, Berlin 1993.

[40] D. Kondepudi - I. Prigogine, Modern Thermodynamics. Wiley, New York 1998.

[41] W. Kurz - D. J. Fisher, Fundamentals of Solidification. Trans Tech, Aedermannsdorf 1989.

[42] J. L. Lions - E. Magenes, Non-Homogeneous Boundary Value Problems and Applications. Vols. I, II. Springer, Berlin 1972 (French edition: Dunod, Paris 1968). | MR

[43] S. Luckhaus, Solidification of alloys and the Gibbs-Thomson law. Preprint, 1994.

[44] S. Luckhaus - A. Visintin, Phase transition in a multicomponent system. Manuscripta Math. 43 (1983), 261-288. | fulltext EuDML | DOI | MR | Zbl

[45] J.-E. Martinez-Legaz - B. F. Svaiter, Monotone operators representable by l.s.c. convex functions. Set-Valued Anal. 13 (2005), 21-46. | DOI | MR | Zbl

[46] J.-E. Martinez-Legaz - B. F. Svaiter, Minimal convex functions bounded below by the duality product. Proc. Amer. Math. Soc. 136 (2008), 873-878. | DOI | MR | Zbl

[47] J.-E. Martinez-Legaz - M. Théra, A convex representation of maximal monotone operators. J. Nonlinear Convex Anal. 2 (2001), 243-247. | MR | Zbl

[48] M. Marques Alves - B.F. Svaiter, Brndsted-Rockafellar property and maximality of monotone operators representable by convex functions in non-reflexive Banach spaces. J. Convex Analysis 15 (2008), 693-706. | MR | Zbl

[49] I. Müller, A History of Thermodynamics. Springer, Berlin 2007.

[50] I. Müller - W. Weiss, Entropy and Energy. A Universal Competition. Springer, Berlin 2005. | MR

[51] I. Müller - W. Weiss, A history of thermodynamics of irreversible processes. (in preparation).

[52] B. Nayroles, Deux théorèmes de minimum pour certains systèmes dissipatifs. C. R. Acad. Sci. Paris Sér. A-B 282 (1976), A1035-A1038. | MR | Zbl

[53] O. Penrose - P.C. Fife, Thermodynamically consistent models of phase-field type for the kinetics of phase transitions. Physica D 43 (1990), 44-62. | DOI | MR | Zbl

[54] O. Penrose - P.C. Fife, On the relation between the standard phase-field model and a ``thermodynamically consistent'' phase-field model. Physica D, 69 (1993), 107-113. | DOI | MR | Zbl

[55] I. Prigogine, Thermodynamics of Irreversible Processes. Wiley-Interscience, New York 1967. | MR | Zbl

[56] R. T. Rockafellar, Convex Analysis. Princeton University Press, Princeton 1969. | MR

[57] U. Stefanelli, The Brezis-Ekeland principle for doubly nonlinear equations. S.I.A.M. J. Control Optim. 8 (2008), 1615-1642. | DOI | MR | Zbl

[58] A. D. Solomon - V. Alexiades - D. G. Wilson, A numerical simulation of a binary alloy solidification process. S.I.A.M. J. Sci. Statist. Comput. 6 (1985), 911-922. | DOI | MR | Zbl

[59] J. Stefan, Über einige Probleme der Theorie der Wärmeleitung. Sitzungber., Wien, Akad. Mat. Natur. 98 (1889), 473-484. Also ibid. pp. 614-634, 965-983, 1418-1442.

[60] B. F. Svaiter, Fixed points in the family of convex representations of a maximal monotone operator. Proc. Amer. Math. Soc. 131 (2003), 3851-3859. | DOI | MR | Zbl

[61] L. Tartar, Nonlocal effects induced by homogenization. In: Partial Differential Equations and the Calculus of Variations, Vol. II (F. Colombini, A. Marino, L. Modica and S. Spagnolo, Eds.) Birkhäuser (Boston 1989), 925-938. | MR

[62] L. Tartar, Memory effects and homogenization. Arch. Rational Mech. Anal. 111 (1990), 121-133. | DOI | MR | Zbl

[63] L. Tartar, The General Theory of Homogenization. A Personalized Introduction. Springer, Berlin; UMI, Bologna, 2009. | DOI | MR | Zbl

[64] D. A. Tarzia, A bibliography on moving-free boundary problems for the heat-diffusion equation. The Stefan and related problems. Universidad Austral, Departamento de Matematica, Rosario, 2000. | MR | Zbl

[65] A. Visintin, Models of Phase Transitions. Birkhäuser, Boston 1996. | DOI | MR | Zbl

[66] A. Visintin, Introduction to Stefan-type problems. In: Handbook of Differential Equations: Evolutionary Differential Equations vol. IV (C. Dafermos and M. Pokorny, eds.) North-Holland, Amsterdam (2008), chap. 8, 377-484. | MR | Zbl

[67] A. Visintin, Extension of the Brezis-Ekeland-Nayroles principle to monotone operators. Adv. Math. Sci. Appl. 18 (2008), 633-650. | MR | Zbl

[68] A. Visintin, Phase transitions and glass formation. S.I.A.M. J. Math. Anal. 41 (2009), 1725-1756. | DOI | MR | Zbl

[69] A. Visintin, Scale-transformations in the homogenization of nonlinear magnetic processes. Archive Rat. Mech. Anal. 198 (2010), 569-611. | DOI | MR | Zbl

[70] A. Visintin, Structural stability of doubly nonlinear flows. Boll. Un. Mat. Ital. IV (2011), 363-391. | fulltext bdim | fulltext EuDML | MR | Zbl

[71] A. Visintin, On the structural stability of monotone flows. Boll. Un. Mat. Ital. IV (2011), 471-479. | fulltext bdim | fulltext EuDML | MR | Zbl

[72] A. Visintin, Structural stability of rate-independent nonpotential flows. Discrete and Continuous Dynamical Systems 6 (2013), 257-275. doi:10.3934/dcdss.2013.6.257 | DOI | MR | Zbl

[73] A. Visintin, Variational formulation and structural stability of monotone equations. Calc. Var. Partial Differential Equations (in press). | DOI | MR | Zbl

[74] D. P. Woodruff, The Solid-Liquid Interface. Cambridge Univ. Press, Cambridge 1973.

[75] L. C. Woods, The Thermodynamics of Fluid Systems. Clarendon Press, Oxford 1975.

[76] E. Zeidler, Nonlinear functional analysis and its applications. II/B. Nonlinear monotone operators. Springer, New York 1990. | DOI | MR | Zbl