Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2013_9_6_1_a1, author = {Braides, Andrea and Solci, Margherita}, title = {Multi-Scale {Free-Discontinuity} {Problems} with {Soft} {Inclusions}}, journal = {Bollettino della Unione matematica italiana}, pages = {29--51}, publisher = {mathdoc}, volume = {Ser. 9, 6}, number = {1}, year = {2013}, zbl = {1272.49024}, mrnumber = {3077112}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_1_a1/} }
TY - JOUR AU - Braides, Andrea AU - Solci, Margherita TI - Multi-Scale Free-Discontinuity Problems with Soft Inclusions JO - Bollettino della Unione matematica italiana PY - 2013 SP - 29 EP - 51 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_1_a1/ LA - en ID - BUMI_2013_9_6_1_a1 ER -
Braides, Andrea; Solci, Margherita. Multi-Scale Free-Discontinuity Problems with Soft Inclusions. Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 1, pp. 29-51. http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_1_a1/
[1] An extension theorem from connected sets, and homogenization in general periodic domains. Nonlinear Anal. 18 (1992), 481-496. | DOI | MR | Zbl
- - - ,[2] Functions of Bounded Variation and Free Discontinuity Problems, Oxford University Press, Oxford, 2000. | MR | Zbl
- - ,[3] Damage analysis of fiber composites Part I: Statistical analysis on fiber scale. Computer Methods in Applied Mechanics and Engineering 172 (1999), 27-77. | DOI | MR | Zbl
- - - ,[4] The Variational Approach to Fracture. Journal of Elasticity, 91 (2008), 5-148. | DOI | MR | Zbl
- - ,[5] Approximation of Free-Discontinuity Problems. Lecture Notes in Math. 1694, Springer Verlag, Berlin, 1998. | DOI | MR | Zbl
,[6] $\Gamma$-convergence for Beginners, Oxford University Press, Oxford, 2002. | DOI | MR
,[7] A handbook of $\Gamma$-convergence. In Handbook of Differential Equations. Stationary Partial Differential Equations, Volume 3 (M. Chipot and P. Quittner, eds.), Elsevier, 2006. | MR | Zbl
,[8] A variational approach to double-porosity problems. Asymptotic Anal. 39 (2004), 281-308. | MR | Zbl
- - ,[9] Homogenization of Multiple Integrals. Oxford University Press, Oxford, 1998. | MR | Zbl
- ,[10] Homogenization of free discontinuity problems. Arch. Rational Mech. Anal. 135 (1996), 297-356. | DOI | MR | Zbl
- - ,[11] Homogenization of periodic nonlinear media with soft and stiff inclusions. Math. Meth. Mod. Appl. Sci. 5 (1995), 543-564. | DOI | MR | Zbl
- ,[12] An extension theorem in SBV and an application to the homogenization of the Mumford-Shah functional in perforated domains. J. Math. Pures Appl. 95 (2011), 349-381. | DOI | MR | Zbl
- ,[13] An Introduction to $\Gamma$-convergence, Birkhauser, Boston, 1993. | DOI | MR | Zbl
,[14] A damage mechanics approach to stress softening and its application to rubber. European Journal of Mechanics A, 20 (2001), 873-892. | DOI | MR | Zbl
- - ,[15] Composite materials: Inelastic behavior, damage, fatigue and fracture. International Journal of Solids and Structures, 37 (2000), 155-170. | DOI | MR | Zbl
,[16] Double-porosity homogenization for perimeter functionals. Math. Meth. Appl. Sci. 32 (2009), 1971-2002. | DOI | MR | Zbl
,[17] Multiphase double-porosity homogenization for perimeter functionals. Math. Meth. Appl. Sci. 35 (2012), 598-620. | DOI | MR | Zbl
,