Multi-Scale Free-Discontinuity Problems with Soft Inclusions
Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 1, pp. 29-51.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

@article{BUMI_2013_9_6_1_a1,
     author = {Braides, Andrea and Solci, Margherita},
     title = {Multi-Scale {Free-Discontinuity} {Problems} with {Soft} {Inclusions}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {29--51},
     publisher = {mathdoc},
     volume = {Ser. 9, 6},
     number = {1},
     year = {2013},
     zbl = {1272.49024},
     mrnumber = {3077112},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_1_a1/}
}
TY  - JOUR
AU  - Braides, Andrea
AU  - Solci, Margherita
TI  - Multi-Scale Free-Discontinuity Problems with Soft Inclusions
JO  - Bollettino della Unione matematica italiana
PY  - 2013
SP  - 29
EP  - 51
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_1_a1/
LA  - en
ID  - BUMI_2013_9_6_1_a1
ER  - 
%0 Journal Article
%A Braides, Andrea
%A Solci, Margherita
%T Multi-Scale Free-Discontinuity Problems with Soft Inclusions
%J Bollettino della Unione matematica italiana
%D 2013
%P 29-51
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_1_a1/
%G en
%F BUMI_2013_9_6_1_a1
Braides, Andrea; Solci, Margherita. Multi-Scale Free-Discontinuity Problems with Soft Inclusions. Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 1, pp. 29-51. http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_1_a1/

[1] E. Acerbi - V. Chiadò Piat - G. Dal Maso - D. Percivale, An extension theorem from connected sets, and homogenization in general periodic domains. Nonlinear Anal. 18 (1992), 481-496. | DOI | MR | Zbl

[2] L. Ambrosio - N. Fusco - D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford University Press, Oxford, 2000. | MR | Zbl

[3] I. Babuška - B. Andersson - P. J. Smith - K. Levin, Damage analysis of fiber composites Part I: Statistical analysis on fiber scale. Computer Methods in Applied Mechanics and Engineering 172 (1999), 27-77. | DOI | MR | Zbl

[4] B. Bourdin - G. A. Francfort - J.-J. Marigo, The Variational Approach to Fracture. Journal of Elasticity, 91 (2008), 5-148. | DOI | MR | Zbl

[5] A. Braides, Approximation of Free-Discontinuity Problems. Lecture Notes in Math. 1694, Springer Verlag, Berlin, 1998. | DOI | MR | Zbl

[6] A. Braides, $\Gamma$-convergence for Beginners, Oxford University Press, Oxford, 2002. | DOI | MR

[7] A. Braides, A handbook of $\Gamma$-convergence. In Handbook of Differential Equations. Stationary Partial Differential Equations, Volume 3 (M. Chipot and P. Quittner, eds.), Elsevier, 2006. | MR | Zbl

[8] A. Braides - V. Chiadò Piat - A. Piatnitski, A variational approach to double-porosity problems. Asymptotic Anal. 39 (2004), 281-308. | MR | Zbl

[9] A. Braides - A. Defranceschi, Homogenization of Multiple Integrals. Oxford University Press, Oxford, 1998. | MR | Zbl

[10] A. Braides - A. Defranceschi - E. Vitali, Homogenization of free discontinuity problems. Arch. Rational Mech. Anal. 135 (1996), 297-356. | DOI | MR | Zbl

[11] A. Braides - A. Garroni, Homogenization of periodic nonlinear media with soft and stiff inclusions. Math. Meth. Mod. Appl. Sci. 5 (1995), 543-564. | DOI | MR | Zbl

[12] F. Cagnetti - L. Scardia, An extension theorem in SBV and an application to the homogenization of the Mumford-Shah functional in perforated domains. J. Math. Pures Appl. 95 (2011), 349-381. | DOI | MR | Zbl

[13] G. Dal Maso, An Introduction to $\Gamma$-convergence, Birkhauser, Boston, 1993. | DOI | MR | Zbl

[14] A. Desimone - J. J. Marigo - L. Teresi, A damage mechanics approach to stress softening and its application to rubber. European Journal of Mechanics A, 20 (2001), 873-892. | DOI | MR | Zbl

[15] G. J. Dvorak, Composite materials: Inelastic behavior, damage, fatigue and fracture. International Journal of Solids and Structures, 37 (2000), 155-170. | DOI | MR | Zbl

[16] M. Solci, Double-porosity homogenization for perimeter functionals. Math. Meth. Appl. Sci. 32 (2009), 1971-2002. | DOI | MR | Zbl

[17] M. Solci, Multiphase double-porosity homogenization for perimeter functionals. Math. Meth. Appl. Sci. 35 (2012), 598-620. | DOI | MR | Zbl