Microstructures and Phase Transitions
Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 3, pp. 655-688.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

This is a short survey on some recent developments in the theory of phase transitions and microstructures in a mathematically rigorous context. The issue is discussed at the microscopic, mesoscopic and macroscopic levels recalling the most used mathematical techniques, mainly from probability theory and variational calculus.
@article{BUMI_2012_9_5_3_a7,
     author = {Presutti, Errico},
     title = {Microstructures and {Phase} {Transitions}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {655--688},
     publisher = {mathdoc},
     volume = {Ser. 9, 5},
     number = {3},
     year = {2012},
     zbl = {1278.82023},
     mrnumber = {3051739},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_3_a7/}
}
TY  - JOUR
AU  - Presutti, Errico
TI  - Microstructures and Phase Transitions
JO  - Bollettino della Unione matematica italiana
PY  - 2012
SP  - 655
EP  - 688
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_3_a7/
LA  - en
ID  - BUMI_2012_9_5_3_a7
ER  - 
%0 Journal Article
%A Presutti, Errico
%T Microstructures and Phase Transitions
%J Bollettino della Unione matematica italiana
%D 2012
%P 655-688
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_3_a7/
%G en
%F BUMI_2012_9_5_3_a7
Presutti, Errico. Microstructures and Phase Transitions. Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 3, pp. 655-688. http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_3_a7/

[1] G. Alberti - G. Bellettini, A non local anisotropic model for phase transition. Part I: the optimal profile problem. Math. Ann., 310 (1998), 527-560. | DOI | MR

[2] G. Alberti - G. Bellettini, A non local anisotropic model for phase transition: asymptotic behaviour of rescaled energies. European J. Appl. Math., 9 (1998), 261- 284. | DOI | MR | Zbl

[3] G. Alberti - G. Bellettini - M. Cassandro - E. Presutti, Surface tension in Ising systems with Kac potentials. J. Stat. Phys., 82 (1996), 743-796. | DOI | MR | Zbl

[4] L. Ambrosio - N. Fusco - D. Pallara, Functions of bounded variations and free discontinuity problems. Oxford Science Publications. (2000). | MR | Zbl

[5] G. Bellettini - M. Cassandro - E. Presutti, Constrained minima of non local free energy functionals. J. Stat. Phys., 84 (1996), 1337-1349. | DOI | MR | Zbl

[6] T. Bodineau, The Wulff construction in three and more dimensions. Comm. Math. Phys., 207 (1999), 197-229. | DOI | MR | Zbl

[7] A. Braides, Gamma-Convergence for Beginners. Series: Oxford Lecture Series in Mathematics and Its Applications, number 22 (2002). | DOI | MR | Zbl

[8] R. Cerf - A. Pisztora, On the Wulff crystal in the Ising model. Ann. Probab., 28 (2000), 947-1017. | DOI | MR | Zbl

[9] G. Dal Maso, An introduction to Gamma convergence. Birkhäuser (1993). | DOI | MR | Zbl

[10] A. De Masi - I. Merola - E. Presutti - Y. Vignaud, Coexistence of ordered and disordered phases in Potts models in the continuum. J. Stat. Phys., 134 (2009), 243. | DOI | MR | Zbl

[11] A. De Masi - E. Orlandi - E. Presutti - L. Triolo, Uniqueness of the instanton profile and global stability in non local evolution equations. Rendiconti di Matematica, 14 (1993), 693-723. | MR | Zbl

[12] A. De Simone - R. V. Kohn - F. Otto - S. Müller, Recent analytical developments in micromagnetics in The Science of Hysteresis II: Physical Modeling, Micromagnetics, and Magnetization Dynamics. G. Bertotti and I. Mayergoyz eds., pp. 269-381, Elsevier (2001).

[13] R. L. Dobrushin - R. Kotecký - S. Shlosman, The Wulff construction: a global shape for local interactions. Amer. Math. Soc. Providence (1992). | MR | Zbl

[14] L. C. Evans - R. Gariepy, Measure theory and fine properties of functions. Studies in Advanced Math. CRC Press, Boca Raton (1992). | MR

[15] R. Fernandez - A. Procacci, Cluster expansion for abstract polymer models. New bounds from an old approach, Comm. Math. Phys., 274, n. 1 (2007), 123-140. | DOI | MR | Zbl

[16] R. Fernandez - A. Procacci - B. Scoppola, The Analyticity Region of the Hard Sphere Gas. Improved Bounds. J. Stat. Phys., 128 (2007), 1139-1143. | DOI | MR | Zbl

[17] D. J. Gates - O. Penrose, The van der Waals limit for classical systems. I. A variational principle. Commun. Math. Phys., 15 (1969), 255-276. | MR | Zbl

[18] D. J. Gates - O. Penrose, The van der Waals limit for classical systems. II. Existence and continuity of the canonical pressure. Commun. Math. Phys., 16 (1970), 231-237. | DOI | MR

[19] D. J. Gates - O. Penrose, The van der Waals limit for classical systems. III. Deviation from the van der Waals-Maxwell theory. Commun. Math. Phys., 17 (1970), 194-209. | DOI | MR

[20] A. Giuliani - J. L. Lebowitz - E. H. Lieb, Periodic Minimizers in 1D Local Mean Field Theory. Commun.Math.Phys., 286 (2009), 163-177. | DOI | MR | Zbl

[21] A. Giuliani - J. L. Lebowitz - E. H. Lieb, Ising models with long-range antiferromagnetic and short-range ferromagnetic interactions. Phys. Rev. B, 74 (2006), 064-420.

[22] A. Giuliani - J. L. Lebowitz - E. H. Lieb, Striped phases in two dimensional dipole systems. Phys. Rev. B, 76 (2007), 184-426.

[23] A. Giuliani - J. L. Lebowitz - E. H. Lieb, Modulated phases of a 1D sharp interface model in a magnetic field. Phys. Rev. B, 80 (2009), 134-420.

[24] A. Giuliani - J. L. Lebowitz - E. H. Lieb, Checkerboards, stripes, and corner energies in spin models with competing interaction. Phys. Rev. B, 84 (2011), 064205-1-10.

[25] M. E. Gurtin, Thermodynamics of evolving phase boundaries in the plane. Oxford Science Publications (1993). | MR | Zbl

[26] J. P. Hansen - I. R. Mcdonald, Theory of Simple Liquids. Academic, London (1976).

[27] R. C. Heitmann - C. Radin, The ground state for sticky disks. J. Statist. Phys., 22 (1980), 281-287. | DOI | MR

[28] W. G. Hoover - F. H. Ree, J. Chem. Phys., 49 (1968), 3609.

[29] M. Kac - G. Uhlenbeck - P. C. Hemmer, On the van der Waals theory of vapor-liquid equilibrium. I. Discussion of a one dimensional model. J. Math. Phys., 4 (1963), 216-228. | DOI | MR | Zbl

[30] M. Kac - G. Uhlenbeck - P. C. Hemmer, On the van der Waals theory of vapor-liquid equilibrium. II. Discussion of the distribution functions. J. Math. Phys., 4 (1963), 229-247. | DOI | MR | Zbl

[31] M. Kac - G. Uhlenbeck - P. C. Hemmer, On the van der Waals theory of vapor-liquid equilibrium. III. Discussion of the critical region. J. Math. Phys., 5 (1964), 60-74. | DOI | MR | Zbl

[32] M. K.-H. Kiessling - J. K. Percus, Hard-sphere fluids with chemical self-potentials. J. Math. Phys., 51 , no. 015206, 42, 82B21 (2010). | DOI | MR | Zbl

[33] R. Kotecký - D. Preiss, Cluster expansion for abstract polymer models, Comm. Math. Phys., 103 (1986), 491-498. | MR | Zbl

[34] J. L. Lebowitz - A. Mazel - E. Presutti, Liquid-vapor phase transitions for systems with finite-range interactions. J. Statist. Phys., 94 (1999), 955-1025. | DOI | MR | Zbl

[35] J. L. Lebowitz - O. Penrose, Rigorous treatment of the Van der Waals-Maxwell theory of the liquid vapour transition. J. Math. Phys., 7 (1966), 98-113. | DOI | MR | Zbl

[36] J. L. Lebowitz - E. Presutti, Statistical mechanics of unbounded spins. Comm. Math. Phys., 50 (1976), 195-218. | MR

[37] J. E. Mayer, Theory of Real Gases, Handbuch der Physik, 12 (Springer-Verlag, Berlin, 1958). | MR

[38] J. E. Mayer - M. G. Mayer, Statistical Mechanics, New York, John Wiley and Sons (1940). | MR

[39] R. A. Minlos - Ya. G. Sinai, Phenomenon of Phase Separation at Low Temperatures in Certain Lattice Models of a Gas. Soviet Physics Doklady, 12 (1968), 688.

[40] L. Modica - S. Mortola, Un esempio di Gamma convergenza. Boll.Un. Mat.Ital. B (5), 14 (1977), 285-299. | MR

[41] O. Penrose - J. L. Lebowitz, Rigorous treatment of metastable states in the van der Waals-Maxwell theory. J. Stat. Phys., 3 (1971), 211-236. | DOI | MR | Zbl

[42] S. Poghosyan - D. Ueltschi, Abstract cluster expansion with applications to statistical mechanical systems. J. of Math. Phys., 50 (2009), 053-509. | DOI | MR | Zbl

[43] E. Presutti, Scaling Limits in Statistical Mechanics and Microstructures in Continuum Mechanics. Heidelberg: Springer, Theoretical and Mathematical Physics (2008). | MR | Zbl

[44] E. Pulvirenti - D. Tsagkarogiannis, Cluster expansion in the canonical ensemble. Submitted to Commun. Math. Phys. | DOI | MR | Zbl

[45] C. Radin, The ground state for soft disks. J. Statist. Phys., 26 (1981), 365-373. | DOI | MR

[46] D. Ruelle, Statistical Mechanics: rigorous results, World Scientific, Imperial College Press, 1969. | DOI | MR | Zbl

[47] Ya. G. Sinai, Theory of phase transitions: rigorous results. Akademiai Kiadó. Budapest (1982). | MR

[48] R. J. Speedy, J. Phys., Condens. Matter, 10 (1998), 4387.

[49] F. Theil, A proof of crystallization in two dimensions. Comm. Math. Phys., 262 (2006), 209-236. | DOI | MR | Zbl

[50] Y. Au Yeung - G. Friesecke - B. Schmidt, Minimizing atomic configurations of short range pair potentials in two dimensions: crystallization in the Wulff shape. arXiv:0909.0927v1 [math.AP] (2009). | DOI | MR | Zbl

[51] M. Zahradnik, A short course on the Pirogov-Sinai theory. Rend. Mat. Appl., 18 (1998), 411-486. | MR | Zbl