Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2012_9_5_3_a3, author = {Fortini, Sandra and Ladelli, Lucia and Regazzini, Eugenio}, title = {Central {Limit} {Theorem} with {Exchangeable} {Summands} and {Mixtures} of {Stable} {Laws} as {Limits}}, journal = {Bollettino della Unione matematica italiana}, pages = {515--542}, publisher = {mathdoc}, volume = {Ser. 9, 5}, number = {3}, year = {2012}, zbl = {1286.60025}, mrnumber = {3051735}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_3_a3/} }
TY - JOUR AU - Fortini, Sandra AU - Ladelli, Lucia AU - Regazzini, Eugenio TI - Central Limit Theorem with Exchangeable Summands and Mixtures of Stable Laws as Limits JO - Bollettino della Unione matematica italiana PY - 2012 SP - 515 EP - 542 VL - 5 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_3_a3/ LA - en ID - BUMI_2012_9_5_3_a3 ER -
%0 Journal Article %A Fortini, Sandra %A Ladelli, Lucia %A Regazzini, Eugenio %T Central Limit Theorem with Exchangeable Summands and Mixtures of Stable Laws as Limits %J Bollettino della Unione matematica italiana %D 2012 %P 515-542 %V 5 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_3_a3/ %G en %F BUMI_2012_9_5_3_a3
Fortini, Sandra; Ladelli, Lucia; Regazzini, Eugenio. Central Limit Theorem with Exchangeable Summands and Mixtures of Stable Laws as Limits. Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 3, pp. 515-542. http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_3_a3/
[1] Probabilistic study of the speed of approach to equilibrium for an inelastic Kac model. J. Statist. Phys., 133 (2008), 683-710. | DOI | MR | Zbl
- - ,[2] Convergence of Probability Measures, 2nd. ed. Wiley, New York (1999). | DOI | MR
,[3] Central limit theorems for interchangeable processes. Canad. J. Math., 10 (1958), 222-229. | DOI | MR | Zbl
- - - ,[4] Probability Theory. Independence, Interchangeability, Martingales, 3rd ed. Springer-Verlag, New York (1997). | DOI | MR
- ,[5] An Introduction to the Theory of Point Processes. Elementary Theory and Methods, 2nd ed. 1 Springer-Verlag, New York (2003). | MR | Zbl
- ,[6] A Bayesian peek into Feller volume I. Sankhyā Ser. A, 64 (2002), 820-841. | MR | Zbl
- ,[7] Proof of a McKean conjecture on the rate of convergence of Boltzmann-equation solutions. arXiv: 1206.5147 v1. | DOI | MR | Zbl
- ,[8] Real Analysis and Probability. Cambridge Univ. Press, Cambridge (2002). | DOI | MR | Zbl
,[9] A central limit problem for partially exchangeable random variables. Theory Probab. Appl., 41 (1996), 224-246. | DOI | MR | Zbl
- - ,[10] A Modern Approach to Probability Theory. Birkhäuser, Boston (1997). | DOI | MR | Zbl
- ,[11] Central limit theorem for the solution of the Kac equation. Ann. Appl. Probab., 18 (2006), 2320-2336. | DOI | MR | Zbl
- ,[12] Complete characterization of convergence to equilibrium for an inelastic Kac model. J. Statist. Phys., 147 (2012), 1007-1019. | DOI | MR | Zbl
- ,[13] Advanced Probability Theory. 2nd ed. Marcel Dekker Inc., New York (1995). | MR | Zbl
,[14] Independent and Stationary Sequences of Random Variables. Wolters-Noordhoff Publishing, Groningen (1971). | MR | Zbl
- ,[15] Central limit theorems for exchangeable random variables when limits are scale mixtures of Normals. J. Theoret. Probab., 16 (2003), 543-570. | DOI | MR | Zbl
- ,[16] Erratum to: Central limit theorems for exchangeable random variables when limits are scale mixtures of normals. J. Theoret. Probab., 25 (2012), 310-311. | DOI | MR | Zbl
- ,[17] Probabilistic Symmetries and Invariance Principles. Springer-Verlag, New York (2005). | MR | Zbl
,[18] Probability Theory, 4th ed. 1 Springer-Verlag, New York (1977). | MR
,[19] On the central limit problem for partially exchangeable random variables with values in a Hilbert space. Theory Probab. Appl., 42 (1997), 796-812. | DOI | MR | Zbl
- ,[20] Convergence to equilibrium of the solution of Kac's kinetic equation. A probabilistic view. Boll. Unione Mat. Ital. (9), 2 (2009), 175-198. | fulltext bdim | fulltext EuDML | MR | Zbl
,[21] An extension of the weak law of large numbers for exchangeable sequences. Acta Appl. Math., 109 (2010), 759-763. | DOI | MR | Zbl
,