Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2012_9_5_3_a1, author = {Frehse, Jens and Specovius-Neugebauer, Maria}, title = {Fractional {Interior} {Differentiability} of the {Stress} {Velocities} to {Elastic} {Plastic} {Problems} with {Hardening}}, journal = {Bollettino della Unione matematica italiana}, pages = {469--494}, publisher = {mathdoc}, volume = {Ser. 9, 5}, number = {3}, year = {2012}, zbl = {1278.35242}, mrnumber = {3051733}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_3_a1/} }
TY - JOUR AU - Frehse, Jens AU - Specovius-Neugebauer, Maria TI - Fractional Interior Differentiability of the Stress Velocities to Elastic Plastic Problems with Hardening JO - Bollettino della Unione matematica italiana PY - 2012 SP - 469 EP - 494 VL - 5 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_3_a1/ LA - en ID - BUMI_2012_9_5_3_a1 ER -
%0 Journal Article %A Frehse, Jens %A Specovius-Neugebauer, Maria %T Fractional Interior Differentiability of the Stress Velocities to Elastic Plastic Problems with Hardening %J Bollettino della Unione matematica italiana %D 2012 %P 469-494 %V 5 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_3_a1/ %G en %F BUMI_2012_9_5_3_a1
Frehse, Jens; Specovius-Neugebauer, Maria. Fractional Interior Differentiability of the Stress Velocities to Elastic Plastic Problems with Hardening. Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 3, pp. 469-494. http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_3_a1/
[1] Materials with memory, volume 1682 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1998. Initial-boundary value problems for constitutive equations with internal variables. | DOI | MR
,[2] Local $H^1$-regularity and $H^{1/3 - \delta}$-regularity up to the boundary in time dependent viscoplasticity. Asymptot. Anal., 63 (3) (2009),151-187. | MR
- ,[3] Hölder continuity for the displacements in isotropic and kinematic hardening with von Mises yield criterion. ZAMM Z. Angew. Math. Mech., 88 (8) (2008), 617-629. | DOI | MR
- ,[4] Regularity results for three-dimensional isotropic and kinematic hardening including boundary differentiability. Math. Models Methods Appl. Sci., 19 (12) (2009), 2231-2262. | DOI | MR | Zbl
- ,[5] Improved $L^p$-estimates for the strain velocities in hardening problems. GAMM-Mitteilungen, 34 (2011), 10-20. | DOI | MR
- ,[6] Fractional differentiability for the stress velocities to the solution of the Prandtl-Reuss problem. To appear in ZAMM Z. Angew. Math. Mech. | DOI | MR | Zbl
- ,[7] Analytical and numerical aspects of time-dependent models with internal variables. ZAMM Z. Angew. Math. Mech., 90 (10-11, Special Issue: On the Occasion of Zenon Mroz' 80th Birthday) (2010), 861-902. | DOI | MR
- - - ,[8] Existence theorems for plasticity problems. J. Math. Pures Appl. (9), 55 (4) (1976), 431-444. | MR | Zbl
,[9] On plasticity with hardening. J. Math. Anal. Appl., 62(2) (1978), 325- 336. | DOI | MR | Zbl
,[10] On global spatial regularity and convergence rates for time dependent elasto-plasticity. M3AS, 20 (2010), 1823-1858. | DOI | MR | Zbl
,[11] Non-homogeneous boundary value problems and applications. Vol. I. Springer-Verlag, New York, 1972. Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181. | MR | Zbl
- ,[12] On regularity for plasticity with hardening. Technical Report 388, Bonner Mathematische Schriften, 2008. | MR
,[13] Differential properties of solutions of evolution variational inequalities in the theory of plasticity. J. Math. Sci., 72 (6) (1994), 3449-3458. | DOI | MR
,