Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2012_9_5_3_a0, author = {Rionero, Salvatore}, title = {Asymptotic {Behaviour} of {Solutions} to a {Nonlinear} {Third} {Order} {P.D.E.} {Modeling} {Physical} {Phenomena}}, journal = {Bollettino della Unione matematica italiana}, pages = {451--468}, publisher = {mathdoc}, volume = {Ser. 9, 5}, number = {3}, year = {2012}, zbl = {1282.35073}, mrnumber = {3051732}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_3_a0/} }
TY - JOUR AU - Rionero, Salvatore TI - Asymptotic Behaviour of Solutions to a Nonlinear Third Order P.D.E. Modeling Physical Phenomena JO - Bollettino della Unione matematica italiana PY - 2012 SP - 451 EP - 468 VL - 5 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_3_a0/ LA - en ID - BUMI_2012_9_5_3_a0 ER -
%0 Journal Article %A Rionero, Salvatore %T Asymptotic Behaviour of Solutions to a Nonlinear Third Order P.D.E. Modeling Physical Phenomena %J Bollettino della Unione matematica italiana %D 2012 %P 451-468 %V 5 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_3_a0/ %G en %F BUMI_2012_9_5_3_a0
Rionero, Salvatore. Asymptotic Behaviour of Solutions to a Nonlinear Third Order P.D.E. Modeling Physical Phenomena. Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 3, pp. 451-468. http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_3_a0/
[1] Abstract stability theory and applications to hyperbolic equations with time dependent dissipative force fields. Comp. and Math. with Appl., 12A (1986), 541. | MR | Zbl
,[2] Stability for second order abstract evolution equations. Nonlinear Anal. Theory, Math. Appl., 8, n. 3 (1984), 237. | DOI | MR | Zbl
,[3] Physics and Applications of the Josephson Effect. Wiley-Interscience, New York (1982).
- ,[4] Possible new effects in superconductive tunneling. Phys. Lett. 1 (1962), 251-253, The discovery of tunneling supercurrents, Rev. Mod. Phys B, 46 (1974), 251-254 and the references therein. 1447, (2000). | Zbl
,[5] Soliton Excitations in Josephson Tunnel Junctions. Phys. Rev. B 25 (1982), 5737-5748.
- - ,[6] Fluxons in Long Josephson Junctions. In: Solitons in Action Proceedings of a workshop sponsored by the Mathematics Division, Army Research Office held at Redstone Arsenal, October 26-27, 1977 (Eds Karl Lonngren and Alwyn Scott). Academic Press, New York, (1978). | MR
,[7] Decay, growth, continuous dependence and uniqueness results in generalized heat conductions theories, Appl. Anal., 38, n. 4 (1990), 231-243. | DOI | MR | Zbl
- - ,[8] Hydrodynamics, Cambridge University Press, Cambridge (1959). | MR
,[9] Soluzione di un problema al contorno della magneto-idrodinamica, Ann. Mat. Pura Appl., 35 (1953), 269-290 (in italian). | DOI | MR | Zbl
,[10] Hyperbolicity and change of type in the flow of viscoelastic fluids, Arch. Rational Mech. Anal., 87 (1985), 213-251. | DOI | MR | Zbl
- - ,[11] Wave propagations in rods of Voigt material and visco-elastic materials with three-parameters models, Quart. Appl. Math., 14 (1956), 153-169. | DOI | MR | Zbl
,[12] On some viscoelastic models, Atti Acc. Lincei Rend. Fis., 75 (1983), 1-10. | fulltext bdim | fulltext EuDML | MR | Zbl
,[13] Stability for a third order Sine-Gordon equation, Rend. Math. Serie VII, 18 (1998), 347-365. | MR | Zbl
- ,[14] Stability and attractivity for a class of dissipative phenomena. Rend. Met. Serie VII, vol 21 (2000), 191-206. | MR | Zbl
- ,[15] Global Stability properties for a class of dissipative phenomena via one or several Liapunov functionals, Nonlinear Dyn. Sys. Theory, 5 (2005), 9-38. | MR | Zbl
- ,[16] Stability Properties for Some Non-autonomous Dissipative Phenomena Proved by Families of Liapunov functionals, Nonlinear Dyn. Sys. Theory, 9, n. 3 (2009), 249-262. | MR | Zbl
- ,[17] A rigorous reduction of the $L^2$-stability of the solutions to a nonlinear binary reaction-diffusion system of O.D.Es to the stability of the solutions to a linear binary system of O.D.Es. J.M.A.A., 310 (2006), 372-392. | fulltext EuDML | DOI | MR
,[18] stability analysis for a Lotka-Volterra reaction-diffusion system of P.D.Es., IMA J.Appl. Math., 72, n. 5 (2007), 540-555. | DOI | MR | Zbl
- , Cross-diffusion influence on the nonlinear $L^2$-[19] Introduction to the theory of stability. Springer text in Appl. Math V. 24 (1997). | MR
,[20] Qualitative estimates for Partial Differential Equations: an introduction. Boca Raton, Florida: CRC Press, (1996). | MR | Zbl
- ,[21] Stability-Instability criteria for non-autonomous systems, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei, s. 9, Mat. Appl., 20, n. 4 (2009), 347- 367. | DOI | MR | Zbl
,[22] On the nonlinear stability of nonautonomous binary systems. Nonlinear Analysis: Theory, Methods and Applications (2011). | DOI | MR | Zbl
,[23] Nonlinear Evolution Equations. Monographs and Surveys in Pure Applied Mathematics, 133, Chapman-Hall/CRC, (2004). | DOI | MR
,