Asymptotic Behaviour of Solutions to a Nonlinear Third Order P.D.E. Modeling Physical Phenomena
Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 3, pp. 451-468.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

The longtime behaviour of the solutions to the initial boundary value problem (1.1)-(1.3) modeling various physical phenomena, either in the autonomous case or in the nonautonomous case, is studied. Conditions guaranteeing ultimately boundedness and conditions guaranteeing nonlinear asymptotic global stability of the null solution are obtained. Boundary conditions, different from (1.2)1-(1.2)2, are also considered (Section 9).
@article{BUMI_2012_9_5_3_a0,
     author = {Rionero, Salvatore},
     title = {Asymptotic {Behaviour} of {Solutions} to a {Nonlinear} {Third} {Order} {P.D.E.} {Modeling} {Physical} {Phenomena}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {451--468},
     publisher = {mathdoc},
     volume = {Ser. 9, 5},
     number = {3},
     year = {2012},
     zbl = {1282.35073},
     mrnumber = {3051732},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_3_a0/}
}
TY  - JOUR
AU  - Rionero, Salvatore
TI  - Asymptotic Behaviour of Solutions to a Nonlinear Third Order P.D.E. Modeling Physical Phenomena
JO  - Bollettino della Unione matematica italiana
PY  - 2012
SP  - 451
EP  - 468
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_3_a0/
LA  - en
ID  - BUMI_2012_9_5_3_a0
ER  - 
%0 Journal Article
%A Rionero, Salvatore
%T Asymptotic Behaviour of Solutions to a Nonlinear Third Order P.D.E. Modeling Physical Phenomena
%J Bollettino della Unione matematica italiana
%D 2012
%P 451-468
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_3_a0/
%G en
%F BUMI_2012_9_5_3_a0
Rionero, Salvatore. Asymptotic Behaviour of Solutions to a Nonlinear Third Order P.D.E. Modeling Physical Phenomena. Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 3, pp. 451-468. http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_3_a0/

[1] P. Marcati, Abstract stability theory and applications to hyperbolic equations with time dependent dissipative force fields. Comp. and Math. with Appl., 12A (1986), 541. | MR | Zbl

[2] P. Marcati, Stability for second order abstract evolution equations. Nonlinear Anal. Theory, Math. Appl., 8, n. 3 (1984), 237. | DOI | MR | Zbl

[3] A. Barone - G. Paternó, Physics and Applications of the Josephson Effect. Wiley-Interscience, New York (1982).

[4] B. D. Josephson, Possible new effects in superconductive tunneling. Phys. Lett. 1 (1962), 251-253, The discovery of tunneling supercurrents, Rev. Mod. Phys B, 46 (1974), 251-254 and the references therein. 1447, (2000). | Zbl

[5] P. S. Lomdhal - O. H. Soersen - P. L. Christiansen, Soliton Excitations in Josephson Tunnel Junctions. Phys. Rev. B 25 (1982), 5737-5748.

[6] R. D. Parmentier, Fluxons in Long Josephson Junctions. In: Solitons in Action Proceedings of a workshop sponsored by the Mathematics Division, Army Research Office held at Redstone Arsenal, October 26-27, 1977 (Eds Karl Lonngren and Alwyn Scott). Academic Press, New York, (1978). | MR

[7] A. Morro - L. E. Payne - B. Straughan, Decay, growth, continuous dependence and uniqueness results in generalized heat conductions theories, Appl. Anal., 38, n. 4 (1990), 231-243. | DOI | MR | Zbl

[8] H. Lamb, Hydrodynamics, Cambridge University Press, Cambridge (1959). | MR

[9] R. Nardini, Soluzione di un problema al contorno della magneto-idrodinamica, Ann. Mat. Pura Appl., 35 (1953), 269-290 (in italian). | DOI | MR | Zbl

[10] D. D. Joseph - M. Renardy - J. C. Saut, Hyperbolicity and change of type in the flow of viscoelastic fluids, Arch. Rational Mech. Anal., 87 (1985), 213-251. | DOI | MR | Zbl

[11] J. A. Morrison, Wave propagations in rods of Voigt material and visco-elastic materials with three-parameters models, Quart. Appl. Math., 14 (1956), 153-169. | DOI | MR | Zbl

[12] P. Renno, On some viscoelastic models, Atti Acc. Lincei Rend. Fis., 75 (1983), 1-10. | fulltext bdim | fulltext EuDML | MR | Zbl

[13] B. D'Acunto - A. D'Anna, Stability for a third order Sine-Gordon equation, Rend. Math. Serie VII, 18 (1998), 347-365. | MR | Zbl

[14] A. D'Anna - G. Fiore, Stability and attractivity for a class of dissipative phenomena. Rend. Met. Serie VII, vol 21 (2000), 191-206. | MR | Zbl

[15] A. D'Anna - G. Fiore, Global Stability properties for a class of dissipative phenomena via one or several Liapunov functionals, Nonlinear Dyn. Sys. Theory, 5 (2005), 9-38. | MR | Zbl

[16] A. D'Anna - G. Fiore, Stability Properties for Some Non-autonomous Dissipative Phenomena Proved by Families of Liapunov functionals, Nonlinear Dyn. Sys. Theory, 9, n. 3 (2009), 249-262. | MR | Zbl

[17] S. Rionero, A rigorous reduction of the $L^2$-stability of the solutions to a nonlinear binary reaction-diffusion system of O.D.Es to the stability of the solutions to a linear binary system of O.D.Es. J.M.A.A., 310 (2006), 372-392. | fulltext EuDML | DOI | MR

[18] J. N. Flavin - S. Rionero, Cross-diffusion influence on the nonlinear $L^2$-stability analysis for a Lotka-Volterra reaction-diffusion system of P.D.Es., IMA J.Appl. Math., 72, n. 5 (2007), 540-555. | DOI | MR | Zbl

[19] D. R. Merkin, Introduction to the theory of stability. Springer text in Appl. Math V. 24 (1997). | MR

[20] J. N. Flavin - S. Rionero, Qualitative estimates for Partial Differential Equations: an introduction. Boca Raton, Florida: CRC Press, (1996). | MR | Zbl

[21] S. Rionero, Stability-Instability criteria for non-autonomous systems, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei, s. 9, Mat. Appl., 20, n. 4 (2009), 347- 367. | DOI | MR | Zbl

[22] S. Rionero, On the nonlinear stability of nonautonomous binary systems. Nonlinear Analysis: Theory, Methods and Applications (2011). | DOI | MR | Zbl

[23] S. Zheng, Nonlinear Evolution Equations. Monographs and Surveys in Pure Applied Mathematics, 133, Chapman-Hall/CRC, (2004). | DOI | MR