Asymptotic Behaviour of Solutions to a Nonlinear Third Order P.D.E. Modeling Physical Phenomena
Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 3, pp. 451-468

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

The longtime behaviour of the solutions to the initial boundary value problem (1.1)-(1.3) modeling various physical phenomena, either in the autonomous case or in the nonautonomous case, is studied. Conditions guaranteeing ultimately boundedness and conditions guaranteeing nonlinear asymptotic global stability of the null solution are obtained. Boundary conditions, different from (1.2)1-(1.2)2, are also considered (Section 9).
@article{BUMI_2012_9_5_3_a0,
     author = {Rionero, Salvatore},
     title = {Asymptotic {Behaviour} of {Solutions} to a {Nonlinear} {Third} {Order} {P.D.E.} {Modeling} {Physical} {Phenomena}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {451--468},
     publisher = {mathdoc},
     volume = {Ser. 9, 5},
     number = {3},
     year = {2012},
     zbl = {1282.35073},
     mrnumber = {3051732},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_3_a0/}
}
TY  - JOUR
AU  - Rionero, Salvatore
TI  - Asymptotic Behaviour of Solutions to a Nonlinear Third Order P.D.E. Modeling Physical Phenomena
JO  - Bollettino della Unione matematica italiana
PY  - 2012
SP  - 451
EP  - 468
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_3_a0/
LA  - en
ID  - BUMI_2012_9_5_3_a0
ER  - 
%0 Journal Article
%A Rionero, Salvatore
%T Asymptotic Behaviour of Solutions to a Nonlinear Third Order P.D.E. Modeling Physical Phenomena
%J Bollettino della Unione matematica italiana
%D 2012
%P 451-468
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_3_a0/
%G en
%F BUMI_2012_9_5_3_a0
Rionero, Salvatore. Asymptotic Behaviour of Solutions to a Nonlinear Third Order P.D.E. Modeling Physical Phenomena. Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 3, pp. 451-468. http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_3_a0/