On some Variational Inequalities in Unbounded Domains
Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 2, pp. 243-262.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We study the variational formulation of the obstacle problem in unbounded domains when the force term might grow at infinity. We derive the appropriate variational formulation and prove existence and uniqueness of solution. We also show the rate of growth at infinity of the solution in terms of the growth rates of the obstacle and the force, and prove the exponential convergence of the solutions in approximating bounded domains to the solution in the unbounded domain.
@article{BUMI_2012_9_5_2_a4,
     author = {Chipot, Michel and Yeressian, Karen},
     title = {On some {Variational} {Inequalities} in {Unbounded} {Domains}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {243--262},
     publisher = {mathdoc},
     volume = {Ser. 9, 5},
     number = {2},
     year = {2012},
     zbl = {1258.49005},
     mrnumber = {2977248},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a4/}
}
TY  - JOUR
AU  - Chipot, Michel
AU  - Yeressian, Karen
TI  - On some Variational Inequalities in Unbounded Domains
JO  - Bollettino della Unione matematica italiana
PY  - 2012
SP  - 243
EP  - 262
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a4/
LA  - en
ID  - BUMI_2012_9_5_2_a4
ER  - 
%0 Journal Article
%A Chipot, Michel
%A Yeressian, Karen
%T On some Variational Inequalities in Unbounded Domains
%J Bollettino della Unione matematica italiana
%D 2012
%P 243-262
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a4/
%G en
%F BUMI_2012_9_5_2_a4
Chipot, Michel; Yeressian, Karen. On some Variational Inequalities in Unbounded Domains. Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 2, pp. 243-262. http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a4/

[C0] M. Chipot, $\ell$ goes to plus infinity, Birkäuser, 2002. | DOI | MR | Zbl

[C1] M. Chipot, Variational inequalities and flows in porous media, Springer, Berlin, 1984. | DOI | MR | Zbl

[C2] M. Chipot, Elements of nonlinear analysis, Birkäuser, 2000. | DOI | MR | Zbl

[CM] M. Chipot - S. Mardare, To appear.

[CY] M. Chipot - K. Yeressian, Exponential rates of convergence by an iteration technique, C. R. Acad. Sci. Paris Ser. I, 346 (2008), 21-26. | DOI | MR | Zbl

[DL] R. Dautray - J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Springer-Verlag, Berlin, 1990. | MR | Zbl

[KS] D. Kinderlehrer - G. Stampacchia, An introduction to variational inequalities and their applications, Academic Press, New York, 1980. | MR | Zbl

[LS] J. L. Lions - G. Stampacchia, Variational inequalities, Comm. Pure Applied Math, 20 (1967), 493-519. | DOI | MR

[R] J. F. Rodrigues, Obstacle problems in mathematical physics, Mathematical Studies 134, North-Holland, 1987. | MR | Zbl

[Y] K. Yeressian, Spatial Asymptotic Behavior of Elliptic Equations and Variational Inequalities, Thesis, University of Zurich, 2010.