Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2012_9_5_2_a3, author = {Haraux, Alain}, title = {The {Very} {Fast} {Solution} of a {Special} {Second} {Order} {ODE} with {Exponentially} {Decaying} {Forcing} and {Applications}}, journal = {Bollettino della Unione matematica italiana}, pages = {233--241}, publisher = {mathdoc}, volume = {Ser. 9, 5}, number = {2}, year = {2012}, zbl = {1260.34103}, mrnumber = {2977247}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a3/} }
TY - JOUR AU - Haraux, Alain TI - The Very Fast Solution of a Special Second Order ODE with Exponentially Decaying Forcing and Applications JO - Bollettino della Unione matematica italiana PY - 2012 SP - 233 EP - 241 VL - 5 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a3/ LA - en ID - BUMI_2012_9_5_2_a3 ER -
%0 Journal Article %A Haraux, Alain %T The Very Fast Solution of a Special Second Order ODE with Exponentially Decaying Forcing and Applications %J Bollettino della Unione matematica italiana %D 2012 %P 233-241 %V 5 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a3/ %G en %F BUMI_2012_9_5_2_a3
Haraux, Alain. The Very Fast Solution of a Special Second Order ODE with Exponentially Decaying Forcing and Applications. Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 2, pp. 233-241. http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a3/
[1] On the minimizing property of a second order dissipative system in Hilbert spaces, SIAM J. Control Optim., 38 , no. 4 (2000), 1102-1119. | DOI | MR | Zbl
,[2] Decay estimates to equilibrium for some asymptotically autonomous semilinear evolution equations, Journal Asymptotic Analysis, 69 (2010), 31-44. | MR | Zbl
,[3] Convergence of global and bounded solutions of some nonautonomous second order evolution equations with nonlinear dissipation, J. Dynam. Differential Equations, 23, no. 2 (2011), 315-332. | DOI | MR | Zbl
- ,[4] Convergence to steady states in asymptotically auton- omous semilinear evolution equations, Nonlinear Anal., 53, no. 7-8 (2000), 1017-1039. | DOI | MR | Zbl
- ,[5] Slow and fast decay of solutions to some second order evolution equations, J. Anal. Math., 95 (2005), 297-321. | DOI | MR | Zbl
,[6] On the fast solution of evolution equations with a rapidly decaying source term, Math. Control & Rel. Fields 1, (March 2011) 1-20. | DOI | MR | Zbl
,[7] Sharp decay estimates of the solutions to a class of nonlinear second order ODE, Analysis and applications (Singap.), 9, no. 1 (2011), 49-69. | DOI | MR | Zbl
,[8] On a second order dissipative ODE in Hilbert space with an integrable source term, to appear in Acta Mathematica Scientia. | DOI | MR | Zbl
- ,[9] Convergence in gradient-like systems which are asymptotically autonomous and analytic, Nonlinear Anal., 46, no. 5 (2001), Ser. A: Theory Methods, 675-698. | DOI | MR | Zbl
- ,[10] On an asymptotically autonomous system with Tikhonov type regularizing term, Arch. Math., 95 (2010), 389-399. | DOI | MR | Zbl
- ,