The Very Fast Solution of a Special Second Order ODE with Exponentially Decaying Forcing and Applications
Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 2, pp. 233-241.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Let $b$, $c$, $p$ be arbitrary positive constants and let $f \in C(\mathbb{R}^{+})$ be such that for some $\lambda > c$, $F > 0$ we have $|f(t)| \leq F \exp(-\lambda t)$. Then all solutions $x$ of \begin{equation*} \tag{E} x'' + cx' + b|x|^{p}x = f(t) \end{equation*} tend to 0 as well as $x'$ as $t$ tends to infinity. Moreover there exists a unique solution $y$ of (E) such that for some constant $C > 0$ we have $|y(t)| + |y'(t)| \leq C \exp(-\lambda t)$ for all $t > 0$. Finally all other solutions of (E) decay to 0 either like $e^{-ct}$ or like $(1+t)^{-1/p}$ as $t$ tends to infinity.
@article{BUMI_2012_9_5_2_a3,
     author = {Haraux, Alain},
     title = {The {Very} {Fast} {Solution} of a {Special} {Second} {Order} {ODE} with {Exponentially} {Decaying} {Forcing} and {Applications}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {233--241},
     publisher = {mathdoc},
     volume = {Ser. 9, 5},
     number = {2},
     year = {2012},
     zbl = {1260.34103},
     mrnumber = {2977247},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a3/}
}
TY  - JOUR
AU  - Haraux, Alain
TI  - The Very Fast Solution of a Special Second Order ODE with Exponentially Decaying Forcing and Applications
JO  - Bollettino della Unione matematica italiana
PY  - 2012
SP  - 233
EP  - 241
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a3/
LA  - en
ID  - BUMI_2012_9_5_2_a3
ER  - 
%0 Journal Article
%A Haraux, Alain
%T The Very Fast Solution of a Special Second Order ODE with Exponentially Decaying Forcing and Applications
%J Bollettino della Unione matematica italiana
%D 2012
%P 233-241
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a3/
%G en
%F BUMI_2012_9_5_2_a3
Haraux, Alain. The Very Fast Solution of a Special Second Order ODE with Exponentially Decaying Forcing and Applications. Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 2, pp. 233-241. http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a3/

[1] F. Alvarez, On the minimizing property of a second order dissipative system in Hilbert spaces, SIAM J. Control Optim., 38 , no. 4 (2000), 1102-1119. | DOI | MR | Zbl

[2] I. Ben Hassen, Decay estimates to equilibrium for some asymptotically autonomous semilinear evolution equations, Journal Asymptotic Analysis, 69 (2010), 31-44. | MR | Zbl

[3] I. Ben Hassen - L. Chergui, Convergence of global and bounded solutions of some nonautonomous second order evolution equations with nonlinear dissipation, J. Dynam. Differential Equations, 23, no. 2 (2011), 315-332. | DOI | MR | Zbl

[4] R. Chill - M. A. Jendoubi, Convergence to steady states in asymptotically auton- omous semilinear evolution equations, Nonlinear Anal., 53, no. 7-8 (2000), 1017-1039. | DOI | MR | Zbl

[5] A. Haraux, Slow and fast decay of solutions to some second order evolution equations, J. Anal. Math., 95 (2005), 297-321. | DOI | MR | Zbl

[6] A. Haraux, On the fast solution of evolution equations with a rapidly decaying source term, Math. Control & Rel. Fields 1, (March 2011) 1-20. | DOI | MR | Zbl

[7] A. Haraux, Sharp decay estimates of the solutions to a class of nonlinear second order ODE, Analysis and applications (Singap.), 9, no. 1 (2011), 49-69. | DOI | MR | Zbl

[8] A. Haraux - M. A. Jendoubi, On a second order dissipative ODE in Hilbert space with an integrable source term, to appear in Acta Mathematica Scientia. | DOI | MR | Zbl

[9] S. Z. Huang - P. Takac, Convergence in gradient-like systems which are asymptotically autonomous and analytic, Nonlinear Anal., 46, no. 5 (2001), Ser. A: Theory Methods, 675-698. | DOI | MR | Zbl

[10] M. A. Jendoubi - R. May, On an asymptotically autonomous system with Tikhonov type regularizing term, Arch. Math., 95 (2010), 389-399. | DOI | MR | Zbl