Viscous Incompressible Flows Under Stress-Free Boundary Conditions. The Smoothness Effect of Near Orthogonality
Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 2, pp. 225-232.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We consider the initial boundary value problem for the 3D Navier-Stokes equations under a slip type boundary condition. Roughly speaking, we are concerned with regularity results, up to the boundary, under suitable assumptions on the directions of velocity and vorticity. Our starting point is a recent, interesting, result obtained by Berselli and Córdoba concerning the ``near orthogonal case''. We also consider a ``near parallel case''.
@article{BUMI_2012_9_5_2_a2,
     author = {Beir\~ao da Veiga, H.},
     title = {Viscous {Incompressible} {Flows} {Under} {Stress-Free} {Boundary} {Conditions.} {The} {Smoothness} {Effect} of {Near} {Orthogonality}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {225--232},
     publisher = {mathdoc},
     volume = {Ser. 9, 5},
     number = {2},
     year = {2012},
     zbl = {1256.35049},
     mrnumber = {2977246},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a2/}
}
TY  - JOUR
AU  - Beirão da Veiga, H.
TI  - Viscous Incompressible Flows Under Stress-Free Boundary Conditions. The Smoothness Effect of Near Orthogonality
JO  - Bollettino della Unione matematica italiana
PY  - 2012
SP  - 225
EP  - 232
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a2/
LA  - en
ID  - BUMI_2012_9_5_2_a2
ER  - 
%0 Journal Article
%A Beirão da Veiga, H.
%T Viscous Incompressible Flows Under Stress-Free Boundary Conditions. The Smoothness Effect of Near Orthogonality
%J Bollettino della Unione matematica italiana
%D 2012
%P 225-232
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a2/
%G en
%F BUMI_2012_9_5_2_a2
Beirão da Veiga, H. Viscous Incompressible Flows Under Stress-Free Boundary Conditions. The Smoothness Effect of Near Orthogonality. Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 2, pp. 225-232. http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a2/

[1] H. Beirão Da Veiga, Direction of vorticity and regularity up to the boundary. The Lipschitz-continuous case, J. Math. Fluid Mech., DOI: 10.1007/s00021-012-0099-9. | DOI | MR

[2] H. Beirão Da Veiga - L. C. Berselli, On the regularizing effect of the vorticity direction in incompressible viscous flows, Differential Integral Equations, 15 (2002), 345-356. | MR

[3] H. Beirão Da Veiga - L. C. Berselli, Navier-Stokes equations: Green's matrices, vorticity direction, and regularity up to the boundary, J. Diff. Equations, 246 (2009), 597-628. | DOI | MR | Zbl

[4] L. C. Berselli - D. Córdoba, On the regularity of the solutions to the 3-D Navier-Stokes equations: a remark on the role of helicity, C.R. Acad. Sci. Paris, Ser.I, 347 (2009), 613-618. | DOI | MR

[5] P. Constantin - C. Fefferman, Direction of vorticity and the problem of global regularity for the Navier-Stokes equations, Indiana Univ. Math. J., 42 (1993), 775- 789. | DOI | MR | Zbl

[6] C. Foiaş - R. Temam, Remarques sur les équations de Navier-Stokes stationnaires et les phénomènes successifs de bifurcation. (French), Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 5 (1978), 28-63. | fulltext EuDML | MR | Zbl

[7] H. Kozono - T. Yanagisawa, $L^r$ variational inequality for vector fields and Helmholtz-Weyl decomposition in bounded domains, Univ. Math. J., 58 (2009), 1853-1920. | DOI | MR | Zbl

[8] J. Serrin, Mathematical principles of classical fluid mechanics, Handbuch der Physik (herausgegeben von S. Flügge), Bd. 8/1, Strömungsmechanik I (Mitheraus-geber C. Truesdell), pp. 125-263, Springer-Verlag, Berlin, 1959. | MR