Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2012_9_5_2_a2, author = {Beir\~ao da Veiga, H.}, title = {Viscous {Incompressible} {Flows} {Under} {Stress-Free} {Boundary} {Conditions.} {The} {Smoothness} {Effect} of {Near} {Orthogonality}}, journal = {Bollettino della Unione matematica italiana}, pages = {225--232}, publisher = {mathdoc}, volume = {Ser. 9, 5}, number = {2}, year = {2012}, zbl = {1256.35049}, mrnumber = {2977246}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a2/} }
TY - JOUR AU - Beirão da Veiga, H. TI - Viscous Incompressible Flows Under Stress-Free Boundary Conditions. The Smoothness Effect of Near Orthogonality JO - Bollettino della Unione matematica italiana PY - 2012 SP - 225 EP - 232 VL - 5 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a2/ LA - en ID - BUMI_2012_9_5_2_a2 ER -
%0 Journal Article %A Beirão da Veiga, H. %T Viscous Incompressible Flows Under Stress-Free Boundary Conditions. The Smoothness Effect of Near Orthogonality %J Bollettino della Unione matematica italiana %D 2012 %P 225-232 %V 5 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a2/ %G en %F BUMI_2012_9_5_2_a2
Beirão da Veiga, H. Viscous Incompressible Flows Under Stress-Free Boundary Conditions. The Smoothness Effect of Near Orthogonality. Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 2, pp. 225-232. http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a2/
[1] Direction of vorticity and regularity up to the boundary. The Lipschitz-continuous case, J. Math. Fluid Mech., DOI: 10.1007/s00021-012-0099-9. | DOI | MR
,[2] On the regularizing effect of the vorticity direction in incompressible viscous flows, Differential Integral Equations, 15 (2002), 345-356. | MR
- ,[3] Navier-Stokes equations: Green's matrices, vorticity direction, and regularity up to the boundary, J. Diff. Equations, 246 (2009), 597-628. | DOI | MR | Zbl
- ,[4] On the regularity of the solutions to the 3-D Navier-Stokes equations: a remark on the role of helicity, C.R. Acad. Sci. Paris, Ser.I, 347 (2009), 613-618. | DOI | MR
- ,[5] Direction of vorticity and the problem of global regularity for the Navier-Stokes equations, Indiana Univ. Math. J., 42 (1993), 775- 789. | DOI | MR | Zbl
- ,[6] Remarques sur les équations de Navier-Stokes stationnaires et les phénomènes successifs de bifurcation. (French), Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 5 (1978), 28-63. | fulltext EuDML | MR | Zbl
- ,[7] $L^r$ variational inequality for vector fields and Helmholtz-Weyl decomposition in bounded domains, Univ. Math. J., 58 (2009), 1853-1920. | DOI | MR | Zbl
- ,[8] Mathematical principles of classical fluid mechanics, Handbuch der Physik (herausgegeben von S. Flügge), Bd. 8/1, Strömungsmechanik I (Mitheraus-geber C. Truesdell), pp. 125-263, Springer-Verlag, Berlin, 1959. | MR
,