Remarks on a Bifurcation Problem in Fluid Dynamics
Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 2, pp. 205-209.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We sharpen some previous results of [2, 4], dealing with a bifurcation problem arising in fluid dynamics.
@article{BUMI_2012_9_5_2_a0,
     author = {Ambrosetti, Antonio},
     title = {Remarks on a {Bifurcation} {Problem} in {Fluid} {Dynamics}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {205--209},
     publisher = {mathdoc},
     volume = {Ser. 9, 5},
     number = {2},
     year = {2012},
     zbl = {1248.37074},
     mrnumber = {2977244},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a0/}
}
TY  - JOUR
AU  - Ambrosetti, Antonio
TI  - Remarks on a Bifurcation Problem in Fluid Dynamics
JO  - Bollettino della Unione matematica italiana
PY  - 2012
SP  - 205
EP  - 209
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a0/
LA  - en
ID  - BUMI_2012_9_5_2_a0
ER  - 
%0 Journal Article
%A Ambrosetti, Antonio
%T Remarks on a Bifurcation Problem in Fluid Dynamics
%J Bollettino della Unione matematica italiana
%D 2012
%P 205-209
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a0/
%G en
%F BUMI_2012_9_5_2_a0
Ambrosetti, Antonio. Remarks on a Bifurcation Problem in Fluid Dynamics. Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 2, pp. 205-209. http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_2_a0/

[1] A. Ambrosetti - G. Prodi, A Primer of Nonlinear Analysis, Cambridge Studies in Advanced Mathematics No. 34, Cambridge Univ. Press, 1993. | MR | Zbl

[2] A. Marino, Su un problema di diramazione riguardante i moti convettivi in un fluido viscoso, Rend. Sem. Mat. Univ. Padova, 38 (1967), 199-216. | fulltext EuDML | MR | Zbl

[3] P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), 487-513. | DOI | MR | Zbl

[4] W. Velte, Stabilitätsverhalten und Verzweigung stationärer Lösungen der Navier Stokesschen Gleichungen, Arch. Rat. Mech. Anal., 16 (1964), 97-125. | DOI | MR | Zbl