Topologies on Hyperspaces1
Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 1, pp. 173-186
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
Let $Y$ and $Z$ be two arbitrary fixed topological spaces, $C(Y, Z)$ the set of all continuous maps from $Y$ to $Z$, and $\mathcal{O}_{Z}(Y)$ the set consisting of all open subsets $V$ of $Y$ such that $V = f^{-1}(U)$, where $f \in C(Y, Z)$ and $U$ is an open subset of $Z$. In this paper we continue the study of the $\mathcal{A}$-proper and $\mathcal{A}$-admissible topologies on $\mathcal{O}_{Z}(Y)$, where $\mathcal{A}$ is an arbitrary family of spaces, initiated in [6] and we offer new results concerning the finest $X$-proper topology $\tau(\{X\})$ on $\mathcal{O}_{Z}(Y)$ for several metrizable spaces $X$.
@article{BUMI_2012_9_5_1_a9,
author = {Georgiou, Dimitris N.},
title = {Topologies on {Hyperspaces1}},
journal = {Bollettino della Unione matematica italiana},
pages = {173--186},
publisher = {mathdoc},
volume = {Ser. 9, 5},
number = {1},
year = {2012},
zbl = {1259.54002},
mrnumber = {2919655},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_1_a9/}
}
Georgiou, Dimitris N. Topologies on Hyperspaces1. Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 1, pp. 173-186. http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_1_a9/