A Griffiths' Theorem for Varieties with Isolated Singularities
Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 1, pp. 159-172.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

By the fundamental work of Griffiths one knows that, under suitable assumption, homological and algebraic equivalence do not coincide for a general hypersurface section of a smooth projective variety Y. In the present paper we prove the same result in case Y has isolated singularities.
@article{BUMI_2012_9_5_1_a8,
     author = {di Gennaro, Vincenzo and Franco, Davide and Marini, Giambattista},
     title = {A {Griffiths'} {Theorem} for {Varieties} with {Isolated} {Singularities}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {159--172},
     publisher = {mathdoc},
     volume = {Ser. 9, 5},
     number = {1},
     year = {2012},
     zbl = {1256.14009},
     mrnumber = {2919654},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_1_a8/}
}
TY  - JOUR
AU  - di Gennaro, Vincenzo
AU  - Franco, Davide
AU  - Marini, Giambattista
TI  - A Griffiths' Theorem for Varieties with Isolated Singularities
JO  - Bollettino della Unione matematica italiana
PY  - 2012
SP  - 159
EP  - 172
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_1_a8/
LA  - en
ID  - BUMI_2012_9_5_1_a8
ER  - 
%0 Journal Article
%A di Gennaro, Vincenzo
%A Franco, Davide
%A Marini, Giambattista
%T A Griffiths' Theorem for Varieties with Isolated Singularities
%J Bollettino della Unione matematica italiana
%D 2012
%P 159-172
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_1_a8/
%G en
%F BUMI_2012_9_5_1_a8
di Gennaro, Vincenzo; Franco, Davide; Marini, Giambattista. A Griffiths' Theorem for Varieties with Isolated Singularities. Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 1, pp. 159-172. http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_1_a8/

[DGF] V. Di Gennaro - D. Franco, Monodromy of a family of hypersurfaces, Ann. Scient. Éc. Norm. Sup., 42 (2009), 517-529. | fulltext EuDML | DOI | MR | Zbl

[D1] A. Dimca, Singularity and Topology of Hypersurfaces, Universitext, Springer, 1992. | DOI | MR

[D2] A. Dimca, Sheaves in Topology, Universitext, Springer, 2004. | DOI | MR

[FOV] H. Flenner - L. O'Carroll - W. Vogel, Joins and Intersections, Monographs in Mathematics, Springer, 1999. | DOI | MR

[F1] W. Fulton, Intersection Theory, Ergebnisse Math. Grenzg., 2 (Springer, 1984). | DOI | MR | Zbl

[F2] W. Fulton, Young Tableaux With Applications to Representation Theory and Geometry, London Mathematical Society Student Texts 35, Cambridge University Press, 1977. | MR | Zbl

[Gre] M. Green, Griffiths' infinitesimal invariant and the Abel-Jacobi map, J. Differ. Geom., 29 (1989), 545-555. | MR | Zbl

[Gri] P. Griffiths, On the periods of certain rational integrals, I, II, Ann. of Math., 90 (1969), 460-541. | DOI | MR | Zbl

[H] R. Hartshorne, Algebraic Geometry, Graduate Texts in Math., 52 (Springer, 1977). | MR

[L] R. Lazarsfeld, Positivity in Algebraic Geometry I. Classical Setting: Line Bundles and Linear Series, Springer, 2004. | DOI | MR | Zbl

[N] M. Nori, Algebraic cycles and Hodge theoretic connectivity, Invent. Math., 111 (1993), 349-373. | fulltext EuDML | DOI | MR | Zbl

[Sh] T. Shioda, Algebraic cycles on a certain hypersurface, in Algebraic Geometry (Tokyo/Kyoto, 1982), Lecture Notes in Math., 1016 (Springer, 1983), 271-294. | DOI | MR

[Sp] E. H. Spanier, Algebraic Topology, Mc Graw-Hill Series in Higher Mathematics (1966). | MR

[V1] C. Voisin, Hodge Theory and Complex Algebraic Geometry I, Cambridge Studies in Advanced Mathematics 76, Cambridge University Press (2002). | DOI | MR | Zbl

[V2] C. Voisin, Hodge Theory and Complex Algebraic Geometry II, Cambridge Studies in Advanced Mathematics 77, Cambridge University Press (2003). | DOI | MR | Zbl