On Numbers which are Orders of Nilpotent Groups Only
Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 1, pp. 121-124.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In [T. W. Müller, An arithmetic theorem related to groups of bounded nilpotency class, J. Algebra 300 (2006), 10-15] T. W. Müller characterizes the positive integers n satisfying the property that every group of order n is nilpotent of class bounded by a fixed positive integer c. In this article a different proof of the above result will be given.
@article{BUMI_2012_9_5_1_a6,
     author = {Russo, Alessio},
     title = {On {Numbers} which are {Orders} of {Nilpotent} {Groups} {Only}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {121--124},
     publisher = {mathdoc},
     volume = {Ser. 9, 5},
     number = {1},
     year = {2012},
     zbl = {1251.20026},
     mrnumber = {2919652},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_1_a6/}
}
TY  - JOUR
AU  - Russo, Alessio
TI  - On Numbers which are Orders of Nilpotent Groups Only
JO  - Bollettino della Unione matematica italiana
PY  - 2012
SP  - 121
EP  - 124
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_1_a6/
LA  - en
ID  - BUMI_2012_9_5_1_a6
ER  - 
%0 Journal Article
%A Russo, Alessio
%T On Numbers which are Orders of Nilpotent Groups Only
%J Bollettino della Unione matematica italiana
%D 2012
%P 121-124
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_1_a6/
%G en
%F BUMI_2012_9_5_1_a6
Russo, Alessio. On Numbers which are Orders of Nilpotent Groups Only. Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 1, pp. 121-124. http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_1_a6/

[1] L. E. Dickson, Definitions of a group and a field by independent postulates, Trans. Math. Soc., 6 (1905), 198-204. | DOI | MR | Zbl

[2] J. A. Gallian - D. Moulton, When $Z_n$ is the only group of order $n$?, Elem. Math., 48 (1993), 117-119. | fulltext EuDML | MR | Zbl

[3] B. Huppert, Endliche Gruppen I, 2nd edition, Springer, Berlin (1967). | MR

[4] D. Jungnickel, On the uniqueness of the cyclic group of order $n$, Amer. Math. Monthly., 99 (1992), 545-547. | DOI | MR | Zbl

[5] T. W. Müller, An arithmetic theorem related to groups of bounded nilpotency class, J. Algebra, 300 (2006), 10-15. | DOI | MR

[6] G. Pazderski, Die Ordnungen, zu denen nur Gruppen mit gegebener Eigenschaft gehören, Arch. Math., 10 (1959), 331-343. | DOI | MR

[7] L. Rédei, Das schiefe Produkt in der Gruppentheorie, Comm. Math. Helv., 20 (1947), 225-264. | fulltext EuDML | DOI | MR

[8] L. Rédei, Die endlichen einstufig nicht nilpotenten Gruppen, Publ. Math. Debrecen, 4 (1956), 303-324. | MR

[9] D. J. S. Robinson, A course in the theory of groups, 2nd edition, Springer, New York (1996). | DOI | MR