New Periodic Solutions for N-Body Problems with Weak Force Potentials
Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 1, pp. 93-112

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this paper, we apply a variant of the famous Mountain Pass Lemmas of Ambrosetti-Rabinowitz ([5]) and Ambrosetti-Coti Zelati ([2]) with (CPS)c type condition of Cerami-Palais-Smale ([12]) to study the existence of new periodic solutions with a prescribed energy for N-body problems with weak force type potentials.
@article{BUMI_2012_9_5_1_a4,
     author = {Yuan, Pengfei and Zhang, Shiqing},
     title = {New {Periodic} {Solutions} for {N-Body} {Problems} with {Weak} {Force} {Potentials}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {93--112},
     publisher = {mathdoc},
     volume = {Ser. 9, 5},
     number = {1},
     year = {2012},
     zbl = {1348.70028},
     mrnumber = {2919650},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_1_a4/}
}
TY  - JOUR
AU  - Yuan, Pengfei
AU  - Zhang, Shiqing
TI  - New Periodic Solutions for N-Body Problems with Weak Force Potentials
JO  - Bollettino della Unione matematica italiana
PY  - 2012
SP  - 93
EP  - 112
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_1_a4/
LA  - en
ID  - BUMI_2012_9_5_1_a4
ER  - 
%0 Journal Article
%A Yuan, Pengfei
%A Zhang, Shiqing
%T New Periodic Solutions for N-Body Problems with Weak Force Potentials
%J Bollettino della Unione matematica italiana
%D 2012
%P 93-112
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_1_a4/
%G en
%F BUMI_2012_9_5_1_a4
Yuan, Pengfei; Zhang, Shiqing. New Periodic Solutions for N-Body Problems with Weak Force Potentials. Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 1, pp. 93-112. http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_1_a4/