New Periodic Solutions for N-Body Problems with Weak Force Potentials
Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 1, pp. 93-112
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
In this paper, we apply a variant of the famous Mountain Pass Lemmas of Ambrosetti-Rabinowitz ([5]) and Ambrosetti-Coti Zelati ([2]) with (CPS)c type condition of Cerami-Palais-Smale ([12]) to study the existence of new periodic solutions with a prescribed energy for N-body problems with weak force type potentials.
@article{BUMI_2012_9_5_1_a4,
author = {Yuan, Pengfei and Zhang, Shiqing},
title = {New {Periodic} {Solutions} for {N-Body} {Problems} with {Weak} {Force} {Potentials}},
journal = {Bollettino della Unione matematica italiana},
pages = {93--112},
publisher = {mathdoc},
volume = {Ser. 9, 5},
number = {1},
year = {2012},
zbl = {1348.70028},
mrnumber = {2919650},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_1_a4/}
}
TY - JOUR AU - Yuan, Pengfei AU - Zhang, Shiqing TI - New Periodic Solutions for N-Body Problems with Weak Force Potentials JO - Bollettino della Unione matematica italiana PY - 2012 SP - 93 EP - 112 VL - 5 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_1_a4/ LA - en ID - BUMI_2012_9_5_1_a4 ER -
Yuan, Pengfei; Zhang, Shiqing. New Periodic Solutions for N-Body Problems with Weak Force Potentials. Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 1, pp. 93-112. http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_1_a4/