Asymptotic Director Fields of Moving Defects in Nematic Liquid Crystals
Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 1, pp. 81-91.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

This paper deals with the detailed structure of the order-parameter field both close and far from a moving singularity in nematic liquid crystals. We put forward asymptotic expansions that allow to extract from the exact solution the necessary analytical details, at any prescribed order. We also present a simple uniform approximation, which captures the qualitative features of the exact solution in all the domain. This paper is dedicated to the memory of Carlo Cercignani, a master who will be never praised enough for both his scientific achievements and the way he taught how research is to be conducted.
@article{BUMI_2012_9_5_1_a3,
     author = {Biscari, Paolo and Turzi, Stefano},
     title = {Asymptotic {Director} {Fields} of {Moving} {Defects} in {Nematic} {Liquid} {Crystals}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {81--91},
     publisher = {mathdoc},
     volume = {Ser. 9, 5},
     number = {1},
     year = {2012},
     zbl = {1260.82082},
     mrnumber = {2919649},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_1_a3/}
}
TY  - JOUR
AU  - Biscari, Paolo
AU  - Turzi, Stefano
TI  - Asymptotic Director Fields of Moving Defects in Nematic Liquid Crystals
JO  - Bollettino della Unione matematica italiana
PY  - 2012
SP  - 81
EP  - 91
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_1_a3/
LA  - en
ID  - BUMI_2012_9_5_1_a3
ER  - 
%0 Journal Article
%A Biscari, Paolo
%A Turzi, Stefano
%T Asymptotic Director Fields of Moving Defects in Nematic Liquid Crystals
%J Bollettino della Unione matematica italiana
%D 2012
%P 81-91
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_1_a3/
%G en
%F BUMI_2012_9_5_1_a3
Biscari, Paolo; Turzi, Stefano. Asymptotic Director Fields of Moving Defects in Nematic Liquid Crystals. Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 1, pp. 81-91. http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_1_a3/

[1] N. D. Mermin, The topological theory of defects in ordered media, Rev. Mod. Phys., 51 (1979), 591-648. | DOI | MR

[2] M. Kléman, Defects in liquid crystals, Rep. Prog. Phys., 52 (1989), 555-654. | MR

[3] P. Biscari - G. Guidone-Peroli, A hierarchy of defects in biaxial nematics, Commun. Math. Phys., 186 (1997), 381-392. | DOI | MR | Zbl

[4] G. Guidone-Peroli - E. G. Virga, Annihilation of point defects in nematic liquid crystals, Phys. Rev. E, 54 (1996), 5235-5241. | DOI | MR

[5] P. Biscari - G. Guidone-Peroli - E. G. Virga, A statistical study for evolving arrays of nematic point defects, Liquid Crystals, 26 (1999), 1825-1832. | DOI | MR

[6] G. Guidone-Peroli - E. G. Virga, Nucleation of topological dipoles in nematic liquid crystals, Commun. Math. Phys., 200 (1999), 195-210. | DOI | MR | Zbl

[7] G. Ryskin - M. Kremenetsky, Drag force on a line defect moving through an otherwise undisturbed field: Disclination line in a nematic liquid crystal, Phys. Rev. Lett., 67 (1991), 1574-1577.

[8] E. I. Kats - V. V. Lebedev - S. V. Malinin, Disclination motion in liquid crystalline films, J. Exp. Theor. Phys., 95 (2002), 714-727.

[9] P. Biscari - T. J. Sluckin, Field-induced motion of nematic disclinations, SIAM J. Appl. Math., 65 (2005), 2141-2157. | DOI | MR | Zbl

[10] D. Svenšek - S. Žumer, Hydrodynamics of pair-annihilating disclination lines in nematic liquid crystals, Phys. Rev. E, 66 (2002), 021712.

[11] C. Blanc - D. Svenšek - S. Žumer - M. Nobili, Dynamics of nematic liquid crystal disclinations: The role of the backflow, Phys. Rev. Lett., 95 (2005), 097802.

[12] P. Biscari - T. J. Sluckin, A perturbative approach to the backflow dynamics of nematic defects, Euro. J. Appl. Math. 23 (2012), 181-200. | DOI | MR | Zbl

[13] P. Biscari - G. Guidone-Peroli - T. J. Sluckin, The topological microstructure of defects in nematic liquid crystals, Mol. Cryst. Liq. Cryst., 292 (1997), 91-101.

[14] C. Bender - S. Orszag, Advanced Mathematical Methods for Scientists and Engineers, Springer-Verlag, New York (1999). | MR | Zbl

[15] H. Brezis - J. M. Coron - E. Lieb, Harmonic maps with defects, Comm. Math. Phys., 107 (1986), 649-705. | MR | Zbl

[16] M. Abramowitz - I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications (1965). | MR