About the Trimmed and the Poincaré-Dulac Normal Form of Diffeomorphisms
Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 1, pp. 55-80.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

. - In this paper, we give a self-contained introduction to the mould formalism of J. Écalle. We provide a dictionary between moulds and the classical Lie algebraic formalism using non-commutative formal power series. We review results by J. Écalle and B. Vallet about the Trimmed form of local analytic diffeomorphisms of $\mathbb{C}^n$, for which we provide full proofs and details. This allows us to discuss a mould approach to the classical Poincaré-Dulac normal form for diffeomorphisms.
@article{BUMI_2012_9_5_1_a2,
     author = {Cresson, Jacky and Raissy, Jasmin},
     title = {About the {Trimmed} and the {Poincar\'e-Dulac} {Normal} {Form} of {Diffeomorphisms}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {55--80},
     publisher = {mathdoc},
     volume = {Ser. 9, 5},
     number = {1},
     year = {2012},
     zbl = {1250.32027},
     mrnumber = {2919648},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_1_a2/}
}
TY  - JOUR
AU  - Cresson, Jacky
AU  - Raissy, Jasmin
TI  - About the Trimmed and the Poincaré-Dulac Normal Form of Diffeomorphisms
JO  - Bollettino della Unione matematica italiana
PY  - 2012
SP  - 55
EP  - 80
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_1_a2/
LA  - en
ID  - BUMI_2012_9_5_1_a2
ER  - 
%0 Journal Article
%A Cresson, Jacky
%A Raissy, Jasmin
%T About the Trimmed and the Poincaré-Dulac Normal Form of Diffeomorphisms
%J Bollettino della Unione matematica italiana
%D 2012
%P 55-80
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_1_a2/
%G en
%F BUMI_2012_9_5_1_a2
Cresson, Jacky; Raissy, Jasmin. About the Trimmed and the Poincaré-Dulac Normal Form of Diffeomorphisms. Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 1, pp. 55-80. http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_1_a2/

[1] V. I. Arnold, Chapitres supplémentaires de la théorie des équations différentielles ordinaires, Ed. Librairie du Globe, Paris (1996). | MR

[2] A. Baider, Unique normal forms for vector fields and Hamiltonian, J. Diff. Eq., 78 (1989), 33-52. | DOI | MR | Zbl

[3] J. Cresson, Mould calculus and normalization of vector fields and diffeomorphisms, Lectures at the University of Pisa, Prépublications de l'I.H.É.S. (2006), pp. 27.

[4] J. Cresson, Calcul Moulien, Ann. Fac. Sci. Toulouse Math., 18 (2009), 307-395. | fulltext EuDML | MR

[5] J. Écalle, Les fonctions résurgentes, Publ. Math. d'Orsay [Vol. 1: 81-05, Vol. 2: 81-06, Vol. 3: 85-05] 1981, 1985. | MR

[6] J. Écalle, Singularités non abordables par la géométrie, Ann. Inst. Fourier, 42 (1992), 73-164. | fulltext EuDML | MR | Zbl

[7] J. Écalle - D. Schlomiuk, The nilpotent and distinguished form of resonant vector fields or diffeomorphisms, Ann. Inst. Fourier, 43 (1993) 1407-1483. | fulltext EuDML | MR | Zbl

[8] J. Écalle - B. Vallet, Prenormalization, correction, and linearization of resonant vector fields or diffeomorphisms, Prepublication d'Orsay (1995), pp. 101

[9] J. Écalle - B. Vallet, Correction and linearization of resonant vector fields and diffeomorphisms, Math. Z., 229 (1998), 249-318. | DOI | MR | Zbl

[10] P. W. Michor, Topics in differential geometry. Graduate Studies in Mathematics, 93. American Mathematical Society, Providence, RI (2008). | DOI | MR | Zbl