Functional Solutions for Fluid Flows Through Porous Media
Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 1, pp. 187-200.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

The Levy-Caccioppoli global inversion theorem is applied to prove the existence and uniqueness of functional solutions for a problem of flow of a viscous incompressible fluid in a porous medium when the viscosity and the thermal conductivity depend on the temperature. A method based on the Abel integral equation, for determining the dependence of the viscosity from the temperature is also proposed.
@article{BUMI_2012_9_5_1_a10,
     author = {Cimatti, Giovanni},
     title = {Functional {Solutions} for {Fluid} {Flows} {Through} {Porous} {Media}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {187--200},
     publisher = {mathdoc},
     volume = {Ser. 9, 5},
     number = {1},
     year = {2012},
     zbl = {06078979},
     mrnumber = {2919656},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_1_a10/}
}
TY  - JOUR
AU  - Cimatti, Giovanni
TI  - Functional Solutions for Fluid Flows Through Porous Media
JO  - Bollettino della Unione matematica italiana
PY  - 2012
SP  - 187
EP  - 200
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_1_a10/
LA  - en
ID  - BUMI_2012_9_5_1_a10
ER  - 
%0 Journal Article
%A Cimatti, Giovanni
%T Functional Solutions for Fluid Flows Through Porous Media
%J Bollettino della Unione matematica italiana
%D 2012
%P 187-200
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_1_a10/
%G en
%F BUMI_2012_9_5_1_a10
Cimatti, Giovanni. Functional Solutions for Fluid Flows Through Porous Media. Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 1, pp. 187-200. http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_1_a10/

[1] N. H. Abel, Résolution d'un problém de mécanique, Journal für die reine and angewandte Mathematik, herausgegeben von Crelle, 1, Berlin (1826), 97-101.

[2] A. Ambrosetti - G. Prodi, Nonlinear Analysis, Cambridge University Press, 1993.

[3] J. Bear, Dynamics of Fluids in Porous Media, Dover Publications, Inc. New York, 1988. | Zbl

[4] R. Caccioppoli, Un principio di inversione per le corrispondenze funzionali, Atti Accad. Naz. Lincei, 16 (1932), 392-400.

[5] G. Cimatti, On the functional solutions of a system of partial differential equations relevant in mathematical physics, Rend. Mat. Univ. Parma, 10 (2010), 423-439. | MR | Zbl

[6] G. Cimatti, Application of the Abel integral equation to an inverse problem in thermoelectricity, Eur. Jour. Appl. Math (to appear). | DOI | MR | Zbl

[7] R. Gorenflo - S. Vessella, Abel Integral Equations, Springer-Verlag, Berlin, 1980. | DOI | MR

[8] P. Levy, Sur les functions de lignes implicites, Bull. Soc. Mat. Fr., 48, 13-27. | fulltext EuDML | MR | Zbl

[9] D. A. Nield - A. Bejan, Convection in Porous Media, Springer Verlag, Berlin, 1998. | DOI | MR | Zbl

[10] M. Protter - H. Weinberger, Maximus Principle in Differential Equations, Springer-Verlag, New York, 1963. | DOI | MR

[11] L. Tonelli, Su un problema di Abel, Math. Ann. 99 (1928), 183-199. | fulltext EuDML | DOI | MR

[12] F. G. Tricomi, Integral Equations, Interscience Publishers, London 1957. | MR